Menu Close

If-the-coefficients-of-x-k-and-x-k-1-in-the-expansion-2-3x-19-are-equal-what-is-the-value-of-k-




Question Number 100587 by bobhans last updated on 27/Jun/20
If the coefficients of x^k  and x^(k+1)  in the   expansion (2+3x)^(19)  are equal , what is  the value of k ?
Ifthecoefficientsofxkandxk+1intheexpansion(2+3x)19areequal,whatisthevalueofk?
Commented by bobhans last updated on 27/Jun/20
thank you both
thankyouboth
Answered by maths mind last updated on 27/Jun/20
(2+3x)^(19) =ΣC_(19) ^k (3x)^k 2^(19−k)   ⇒C_(19) ^m 3^m 2^(19−m) =C_(19) ^(m+1) 3^(m+1) 2^(19−m−1) ⇒  (C_(19) ^m /C_(19) ^(m+1) )=(3/2)  ⇒(((m+1)!.(18−m)!)/(m!.(19−m)!))=(3/2)⇔2(m+1)=3(19−m)  ⇒5m=55⇒m=11
(2+3x)19=ΣC19k(3x)k219kC19m3m219m=C19m+13m+1219m1C19mC19m+1=32(m+1)!.(18m)!m!.(19m)!=322(m+1)=3(19m)5m=55m=11
Answered by john santu last updated on 27/Jun/20
by Binomial Theorem  (2+3x)^(19)  = Σ_(n = 0) ^(19)  (((19)),((  n)) ) (2)^(19−n)  (3x)^n   we want to find k so that    (((19)),((  k)) ) (2)^(19−k)  (3x)^k  =  (((19)),((k+1)) ) (2)^(18−k)  (3x)^(k+1)   ⇒2.((19!)/(k! (19−k)!)) = 3.((19!)/((k+1)! (18−k)!))  2.((19!)/((19−k).k! (18−k)!)) = 3.((19!)/((k+1).k! (18−k)!))  (2/(19−k)) = (3/(k+1)) ⇔ k = 11 ■
byBinomialTheorem(2+3x)19=19n=0(19n)(2)19n(3x)nwewanttofindksothat(19k)(2)19k(3x)k=(19k+1)(2)18k(3x)k+12.19!k!(19k)!=3.19!(k+1)!(18k)!2.19!(19k).k!(18k)!=3.19!(k+1).k!(18k)!219k=3k+1k=11◼

Leave a Reply

Your email address will not be published. Required fields are marked *