Question Number 100587 by bobhans last updated on 27/Jun/20
$$\mathrm{If}\:\mathrm{the}\:\mathrm{coefficients}\:\mathrm{of}\:{x}^{{k}} \:\mathrm{and}\:{x}^{{k}+\mathrm{1}} \:\mathrm{in}\:\mathrm{the}\: \\ $$$$\mathrm{expansion}\:\left(\mathrm{2}+\mathrm{3}{x}\right)^{\mathrm{19}} \:\mathrm{are}\:\mathrm{equal}\:,\:\mathrm{what}\:\mathrm{is} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{k}\:? \\ $$
Commented by bobhans last updated on 27/Jun/20
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{both} \\ $$
Answered by maths mind last updated on 27/Jun/20
$$\left(\mathrm{2}+\mathrm{3}{x}\right)^{\mathrm{19}} =\Sigma{C}_{\mathrm{19}} ^{{k}} \left(\mathrm{3}{x}\right)^{{k}} \mathrm{2}^{\mathrm{19}−{k}} \\ $$$$\Rightarrow{C}_{\mathrm{19}} ^{{m}} \mathrm{3}^{{m}} \mathrm{2}^{\mathrm{19}−{m}} ={C}_{\mathrm{19}} ^{{m}+\mathrm{1}} \mathrm{3}^{{m}+\mathrm{1}} \mathrm{2}^{\mathrm{19}−{m}−\mathrm{1}} \Rightarrow \\ $$$$\frac{{C}_{\mathrm{19}} ^{{m}} }{{C}_{\mathrm{19}} ^{{m}+\mathrm{1}} }=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{\left({m}+\mathrm{1}\right)!.\left(\mathrm{18}−{m}\right)!}{{m}!.\left(\mathrm{19}−{m}\right)!}=\frac{\mathrm{3}}{\mathrm{2}}\Leftrightarrow\mathrm{2}\left({m}+\mathrm{1}\right)=\mathrm{3}\left(\mathrm{19}−{m}\right) \\ $$$$\Rightarrow\mathrm{5}{m}=\mathrm{55}\Rightarrow{m}=\mathrm{11} \\ $$
Answered by john santu last updated on 27/Jun/20
$$\mathrm{by}\:\mathrm{Binomial}\:\mathrm{Theorem} \\ $$$$\left(\mathrm{2}+\mathrm{3}{x}\right)^{\mathrm{19}} \:=\:\underset{\mathrm{n}\:=\:\mathrm{0}} {\overset{\mathrm{19}} {\sum}}\begin{pmatrix}{\mathrm{19}}\\{\:\:\mathrm{n}}\end{pmatrix}\:\left(\mathrm{2}\right)^{\mathrm{19}−\mathrm{n}} \:\left(\mathrm{3}{x}\right)^{{n}} \\ $$$${we}\:{want}\:{to}\:{find}\:{k}\:{so}\:{that}\: \\ $$$$\begin{pmatrix}{\mathrm{19}}\\{\:\:{k}}\end{pmatrix}\:\left(\mathrm{2}\right)^{\mathrm{19}−{k}} \:\left(\mathrm{3}{x}\right)^{{k}} \:=\:\begin{pmatrix}{\mathrm{19}}\\{{k}+\mathrm{1}}\end{pmatrix}\:\left(\mathrm{2}\right)^{\mathrm{18}−{k}} \:\left(\mathrm{3}{x}\right)^{{k}+\mathrm{1}} \\ $$$$\Rightarrow\mathrm{2}.\frac{\mathrm{19}!}{{k}!\:\left(\mathrm{19}−\mathrm{k}\right)!}\:=\:\mathrm{3}.\frac{\mathrm{19}!}{\left(\mathrm{k}+\mathrm{1}\right)!\:\left(\mathrm{18}−\mathrm{k}\right)!} \\ $$$$\mathrm{2}.\frac{\mathrm{19}!}{\left(\mathrm{19}−\mathrm{k}\right).\mathrm{k}!\:\left(\mathrm{18}−\mathrm{k}\right)!}\:=\:\mathrm{3}.\frac{\mathrm{19}!}{\left(\mathrm{k}+\mathrm{1}\right).\mathrm{k}!\:\left(\mathrm{18}−\mathrm{k}\right)!} \\ $$$$\frac{\mathrm{2}}{\mathrm{19}−\mathrm{k}}\:=\:\frac{\mathrm{3}}{\mathrm{k}+\mathrm{1}}\:\Leftrightarrow\:{k}\:=\:\mathrm{11}\:\blacksquare\: \\ $$