Menu Close

if-the-combined-function-is-h-x-3x-2-1-then-find-the-tow-other-functions-of-its-




Question Number 192048 by sciencestudentW last updated on 06/May/23
if the combined function is h(x)=(√(3x^2 +1))  then find the tow other functions of its.
$${if}\:{the}\:{combined}\:{function}\:{is}\:{h}\left({x}\right)=\sqrt{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$${then}\:{find}\:{the}\:{tow}\:{other}\:{functions}\:{of}\:{its}. \\ $$
Commented by AST last updated on 07/May/23
If “combined” here means h(x)=f(g(x)),  f(x)=(√x),g(x)=3x^2 +1 is a possibility.
$${If}\:“{combined}''\:{here}\:{means}\:{h}\left({x}\right)={f}\left({g}\left({x}\right)\right), \\ $$$${f}\left({x}\right)=\sqrt{{x}},{g}\left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}\:{is}\:{a}\:{possibility}. \\ $$
Answered by mehdee42 last updated on 07/May/23
suppose ; f(x)=(√(ax+b ))  ; a≠0 ,  g(x)=a′x^2 +b′x+c′  ; a′≠0  fog(x)=f(g(x))⇒(√(a(a′x^2 +b′x+c′)+b))≡(√(3x^2 +1))  ⇒aa^′ =3 & ab′=0 &  ac′+b=1  for diffrent  values  a,b,a′,b′,c′ variuos functions  can be obtained.for example :  a=1 ,b=1 , a′=3 , b′=0 & c′=0  ⇒f(x)=(√(x+1))  & g(x)=3x^2   or ; a=3 ,b=−2 , a′=1 , b′=0 & c′=1  ⇒f(x)=(√(3x−2))  &  g(x)=x^2 +1  and so on
$${suppose}\:;\:{f}\left({x}\right)=\sqrt{{ax}+{b}\:}\:\:;\:{a}\neq\mathrm{0}\:,\:\:{g}\left({x}\right)={a}'{x}^{\mathrm{2}} +{b}'{x}+{c}'\:\:;\:{a}'\neq\mathrm{0} \\ $$$${fog}\left({x}\right)={f}\left({g}\left({x}\right)\right)\Rightarrow\sqrt{{a}\left({a}'{x}^{\mathrm{2}} +{b}'{x}+{c}'\right)+{b}}\equiv\sqrt{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\Rightarrow{aa}^{'} =\mathrm{3}\:\&\:{ab}'=\mathrm{0}\:\&\:\:{ac}'+{b}=\mathrm{1} \\ $$$${for}\:{diffrent}\:\:{values}\:\:{a},{b},{a}',{b}',{c}'\:{variuos}\:{functions} \\ $$$${can}\:{be}\:{obtained}.{for}\:{example}\:: \\ $$$${a}=\mathrm{1}\:,{b}=\mathrm{1}\:,\:{a}'=\mathrm{3}\:,\:{b}'=\mathrm{0}\:\&\:{c}'=\mathrm{0} \\ $$$$\Rightarrow{f}\left({x}\right)=\sqrt{{x}+\mathrm{1}}\:\:\&\:{g}\left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} \\ $$$${or}\:;\:{a}=\mathrm{3}\:,{b}=−\mathrm{2}\:,\:{a}'=\mathrm{1}\:,\:{b}'=\mathrm{0}\:\&\:{c}'=\mathrm{1} \\ $$$$\Rightarrow{f}\left({x}\right)=\sqrt{\mathrm{3}{x}−\mathrm{2}}\:\:\&\:\:{g}\left({x}\right)={x}^{\mathrm{2}} +\mathrm{1} \\ $$$${and}\:{so}\:{on} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *