Menu Close

If-the-coordinate-of-the-points-A-and-B-be-3-3-and-7-6-then-the-length-of-the-portion-of-the-line-AB-intercepted-between-the-axes-is-a-5-4-b-10-4-c-13-3-d-non




Question Number 40847 by LXZ last updated on 28/Jul/18
If the coordinate of the points A   and B be (3,3) and (7,6) then the  length of the portion of the line   AB intercepted between the axes is  (a)  (5/4)   (b)   ((√(10))/4)    (c)  ((√(13))/3)    (d) none
$${If}\:{the}\:{coordinate}\:{of}\:{the}\:{points}\:{A}\: \\ $$$${and}\:{B}\:{be}\:\left(\mathrm{3},\mathrm{3}\right)\:{and}\:\left(\mathrm{7},\mathrm{6}\right)\:{then}\:{the} \\ $$$${length}\:{of}\:{the}\:{portion}\:{of}\:{the}\:{line}\: \\ $$$${AB}\:{intercepted}\:{between}\:{the}\:{axes}\:{is} \\ $$$$\left({a}\right)\:\:\frac{\mathrm{5}}{\mathrm{4}}\:\:\:\left({b}\right)\:\:\:\frac{\sqrt{\mathrm{10}}}{\mathrm{4}}\:\:\:\:\left({c}\right)\:\:\frac{\sqrt{\mathrm{13}}}{\mathrm{3}}\:\:\:\:\left({d}\right)\:{none} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Jul/18
eqn of st line is y−3=((6−3)/(7−3))(x−3)  4(y−3)=3(x−3)  4y−12=3x−9  −3x+4y=12−9  −3x+4y=3  (x/(−1))+(y/(3/4))=1  so the line cuts x axis at(−1,0)  yaxis at(0,(3/4))  so length of intercept between axes  (√((0+1)^2 +((3/4)−0)^2 ))    =(√(1+(9/(16))))  =(5/4)
$${eqn}\:{of}\:{st}\:{line}\:{is}\:{y}−\mathrm{3}=\frac{\mathrm{6}−\mathrm{3}}{\mathrm{7}−\mathrm{3}}\left({x}−\mathrm{3}\right) \\ $$$$\mathrm{4}\left({y}−\mathrm{3}\right)=\mathrm{3}\left({x}−\mathrm{3}\right) \\ $$$$\mathrm{4}{y}−\mathrm{12}=\mathrm{3}{x}−\mathrm{9} \\ $$$$−\mathrm{3}{x}+\mathrm{4}{y}=\mathrm{12}−\mathrm{9} \\ $$$$−\mathrm{3}{x}+\mathrm{4}{y}=\mathrm{3} \\ $$$$\frac{{x}}{−\mathrm{1}}+\frac{{y}}{\frac{\mathrm{3}}{\mathrm{4}}}=\mathrm{1} \\ $$$${so}\:{the}\:{line}\:{cuts}\:{x}\:{axis}\:{at}\left(−\mathrm{1},\mathrm{0}\right)\:\:{yaxis}\:{at}\left(\mathrm{0},\frac{\mathrm{3}}{\mathrm{4}}\right) \\ $$$${so}\:{length}\:{of}\:{intercept}\:{between}\:{axes} \\ $$$$\sqrt{\left(\mathrm{0}+\mathrm{1}\right)^{\mathrm{2}} +\left(\frac{\mathrm{3}}{\mathrm{4}}−\mathrm{0}\right)^{\mathrm{2}} }\:\: \\ $$$$=\sqrt{\mathrm{1}+\frac{\mathrm{9}}{\mathrm{16}}}\:\:=\frac{\mathrm{5}}{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *