Question Number 32163 by jarjum last updated on 20/Mar/18
$${If}\:{the}\:{corrdinater}\:{of}\:{the}\:{verticle}\:{of}\:{an} \\ $$$${eqvilateral}\:{triangle}\:{with}\:{length}\:{x}\:{are} \\ $$$$\left({x}_{\mathrm{1}+} {y}_{\mathrm{1}} \right),\left({y}_{\mathrm{1}} +{y}_{\mathrm{2}} \right)\:{and}\:\left({x}_{\mathrm{3}} ,{y}_{\mathrm{3}} \right)\:{then} \\ $$$$\left(\begin{vmatrix}{{x}_{\mathrm{1}} \:\:\:{y}_{\mathrm{1}} \:\:\:\mathrm{2}}\\{{x}_{\mathrm{2}} \:\:\:{y}_{\mathrm{2}} \:\:\:\mathrm{2}}\\{{x}_{\mathrm{3}} \:\:\:{y}_{\mathrm{3}} \:\:\:\mathrm{2}}\end{vmatrix}\right)^{\mathrm{2}} =\mathrm{3}{a}^{\mathrm{4}} ? \\ $$