Menu Close

If-the-corrdinater-of-the-verticle-of-an-eqvilateral-triangle-with-length-x-are-x-1-y-1-y-1-y-2-and-x-3-y-3-then-determinant-x-1-y-1-2-x-2-y-2-2-x-3-y-3-2-




Question Number 32163 by jarjum last updated on 20/Mar/18
If the corrdinater of the verticle of an  eqvilateral triangle with length x are  (x_(1+) y_1 ),(y_1 +y_2 ) and (x_3 ,y_3 ) then  ( determinant (((x_1    y_1    2)),((x_2    y_2    2)),((x_3    y_3    2))))^2 =3a^4 ?
$${If}\:{the}\:{corrdinater}\:{of}\:{the}\:{verticle}\:{of}\:{an} \\ $$$${eqvilateral}\:{triangle}\:{with}\:{length}\:{x}\:{are} \\ $$$$\left({x}_{\mathrm{1}+} {y}_{\mathrm{1}} \right),\left({y}_{\mathrm{1}} +{y}_{\mathrm{2}} \right)\:{and}\:\left({x}_{\mathrm{3}} ,{y}_{\mathrm{3}} \right)\:{then} \\ $$$$\left(\begin{vmatrix}{{x}_{\mathrm{1}} \:\:\:{y}_{\mathrm{1}} \:\:\:\mathrm{2}}\\{{x}_{\mathrm{2}} \:\:\:{y}_{\mathrm{2}} \:\:\:\mathrm{2}}\\{{x}_{\mathrm{3}} \:\:\:{y}_{\mathrm{3}} \:\:\:\mathrm{2}}\end{vmatrix}\right)^{\mathrm{2}} =\mathrm{3}{a}^{\mathrm{4}} ? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *