Menu Close

If-the-equation-p-2-4-p-2-9-x-3-p-2-2-x-2-p-4-p-3-p-2-x-2p-1-0-is-satisfied-by-all-values-of-x-in-0-3-then-sum-of-all-possible-integral-values-of-p-is-fractional-part-fun




Question Number 33944 by rahul 19 last updated on 28/Apr/18
If the equation   (p^2 −4)(p^2 −9)x^3 +[((p−2)/2)]x^2 +(p−4)(p−3)(p−2)x+{2p−1}=0.  is satisfied by all values of x in (0,3] then  sum of all possible integral values of  ′p′ is ?  {.} = fractional part function.  [.]= greatest integer function.
$$\boldsymbol{\mathrm{I}}\mathrm{f}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\left(\mathrm{p}^{\mathrm{2}} −\mathrm{4}\right)\left(\mathrm{p}^{\mathrm{2}} −\mathrm{9}\right){x}^{\mathrm{3}} +\left[\frac{\mathrm{p}−\mathrm{2}}{\mathrm{2}}\right]{x}^{\mathrm{2}} +\left(\mathrm{p}−\mathrm{4}\right)\left(\mathrm{p}−\mathrm{3}\right)\left(\mathrm{p}−\mathrm{2}\right){x}+\left\{\mathrm{2p}−\mathrm{1}\right\}=\mathrm{0}. \\ $$$$\mathrm{is}\:\mathrm{satisfied}\:\mathrm{by}\:\mathrm{all}\:\mathrm{values}\:\mathrm{of}\:{x}\:\mathrm{in}\:\left(\mathrm{0},\mathrm{3}\right]\:{then} \\ $$$${sum}\:{of}\:{all}\:{possible}\:{integral}\:{values}\:{of} \\ $$$$'{p}'\:{is}\:? \\ $$$$\left\{.\right\}\:=\:{fractional}\:{part}\:{function}. \\ $$$$\left[.\right]=\:{greatest}\:{integer}\:{function}. \\ $$
Answered by MJS last updated on 28/Apr/18
p∈Z ⇒ {2p−1}=0  now it′s easy  (p^2 −4)(p^2 −9)=0 ⇒ p∈{−3; −2; 2; 3}  [((p−2)/2)]=0 ⇒ [(p/2)]=1 ⇒ p∈{2; 3}  (p−4)(p−3)(p−2)=0 ⇒ {2; 3; 4}  p∈{2; 3}  sum({2; 3})=5
$${p}\in\mathbb{Z}\:\Rightarrow\:\left\{\mathrm{2}{p}−\mathrm{1}\right\}=\mathrm{0} \\ $$$$\mathrm{now}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy} \\ $$$$\left({p}^{\mathrm{2}} −\mathrm{4}\right)\left({p}^{\mathrm{2}} −\mathrm{9}\right)=\mathrm{0}\:\Rightarrow\:{p}\in\left\{−\mathrm{3};\:−\mathrm{2};\:\mathrm{2};\:\mathrm{3}\right\} \\ $$$$\left[\frac{{p}−\mathrm{2}}{\mathrm{2}}\right]=\mathrm{0}\:\Rightarrow\:\left[\frac{{p}}{\mathrm{2}}\right]=\mathrm{1}\:\Rightarrow\:{p}\in\left\{\mathrm{2};\:\mathrm{3}\right\} \\ $$$$\left(\mathrm{p}−\mathrm{4}\right)\left(\mathrm{p}−\mathrm{3}\right)\left(\mathrm{p}−\mathrm{2}\right)=\mathrm{0}\:\Rightarrow\:\left\{\mathrm{2};\:\mathrm{3};\:\mathrm{4}\right\} \\ $$$${p}\in\left\{\mathrm{2};\:\mathrm{3}\right\} \\ $$$${sum}\left(\left\{\mathrm{2};\:\mathrm{3}\right\}\right)=\mathrm{5} \\ $$
Commented by rahul 19 last updated on 28/Apr/18
Thank you sir !
$$\mathscr{T}{hank}\:{you}\:{sir}\:! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *