Menu Close

If-the-equation-p-2-4-p-2-9-x-3-p-2-2-x-2-p-4-p-3-p-2-x-2p-1-0-is-satisfied-by-all-values-of-x-in-0-3-then-sum-of-all-possible-integral-values-of-p-is-fractional-part-fun




Question Number 33944 by rahul 19 last updated on 28/Apr/18
If the equation   (p^2 −4)(p^2 −9)x^3 +[((p−2)/2)]x^2 +(p−4)(p−3)(p−2)x+{2p−1}=0.  is satisfied by all values of x in (0,3] then  sum of all possible integral values of  ′p′ is ?  {.} = fractional part function.  [.]= greatest integer function.
Iftheequation(p24)(p29)x3+[p22]x2+(p4)(p3)(p2)x+{2p1}=0.issatisfiedbyallvaluesofxin(0,3]thensumofallpossibleintegralvaluesofpis?{.}=fractionalpartfunction.[.]=greatestintegerfunction.
Answered by MJS last updated on 28/Apr/18
p∈Z ⇒ {2p−1}=0  now it′s easy  (p^2 −4)(p^2 −9)=0 ⇒ p∈{−3; −2; 2; 3}  [((p−2)/2)]=0 ⇒ [(p/2)]=1 ⇒ p∈{2; 3}  (p−4)(p−3)(p−2)=0 ⇒ {2; 3; 4}  p∈{2; 3}  sum({2; 3})=5
pZ{2p1}=0nowitseasy(p24)(p29)=0p{3;2;2;3}[p22]=0[p2]=1p{2;3}(p4)(p3)(p2)=0{2;3;4}p{2;3}sum({2;3})=5
Commented by rahul 19 last updated on 28/Apr/18
Thank you sir !
Thankyousir!

Leave a Reply

Your email address will not be published. Required fields are marked *