Menu Close

If-the-equation-sin6x-cos4x-2-have-a-family-of-nonnegative-solutions-x-k-s-where-0-x-1-lt-x-2-lt-x-3-lt-lt-x-k-lt-x-k-1-then-the-value-of-1-pi-k-1-1000-x-




Question Number 18892 by Tinkutara last updated on 01/Aug/17
If the equation sin6x + cos4x = −2 have  a family of nonnegative solutions x_k ′s,  where 0 ≤ x_1  < x_2  < x_3  < .... < x_k  < x_(k+1)   ....., then the value of (1/π)Σ_(k=1) ^(1000) ∣x_(k+1)  − x_k ∣ is
Iftheequationsin6x+cos4x=2haveafamilyofnonnegativesolutionsxks,where0x1<x2<x3<.<xk<xk+1..,thenthevalueof1π1000k=1xk+1xkis
Answered by ajfour last updated on 01/Aug/17
sin 6x+cos 4x=−2  ⇒ sin 6x=−1  and  cos 4x=−1  ⇒ 6x=2nπ+((3π)/2)     ; n≥0   (here)   or  x=((nπ)/3)+(π/4)   ...(i)  And   4x=2mπ+π    ; m≥0         or  x=((mπ)/2)+(π/4)    ...(ii)  since both (i) and (ii) together  must be true,     x−(π/4)= ((nπ)/3)=((mπ)/2)  or   x−(π/4)=kπ    x_(k+1) −x_k =π  ⇒  (1/π)Σ_(k=1) ^(1000) ∣x_(k+1) −x_k ∣=((1000π)/π)=1000 .
sin6x+cos4x=2sin6x=1andcos4x=16x=2nπ+3π2;n0(here)orx=nπ3+π4(i)And4x=2mπ+π;m0orx=mπ2+π4(ii)sinceboth(i)and(ii)togethermustbetrue,xπ4=nπ3=mπ2orxπ4=kπxk+1xk=π1π1000k=1xk+1xk∣=1000ππ=1000.
Commented by ajfour last updated on 01/Aug/17
is it correct?
isitcorrect?
Commented by Tinkutara last updated on 01/Aug/17
Thank you very much ajfour Sir!
ThankyouverymuchajfourSir!

Leave a Reply

Your email address will not be published. Required fields are marked *