Menu Close

If-the-equation-x-2-2-1-2-x-and-x-2-2-1-2-x-have-one-and-only-one-root-in-common-then-is-equal-to-




Question Number 20684 by Tinkutara last updated on 31/Aug/17
If the equation x^2  + β^2  = 1 − 2βx and  x^2  + α^2  = 1 − 2αx have one and only  one root in common, then ∣α − β∣ is  equal to
$${If}\:{the}\:{equation}\:{x}^{\mathrm{2}} \:+\:\beta^{\mathrm{2}} \:=\:\mathrm{1}\:−\:\mathrm{2}\beta{x}\:{and} \\ $$$${x}^{\mathrm{2}} \:+\:\alpha^{\mathrm{2}} \:=\:\mathrm{1}\:−\:\mathrm{2}\alpha{x}\:{have}\:{one}\:{and}\:{only} \\ $$$${one}\:{root}\:{in}\:{common},\:{then}\:\mid\alpha\:−\:\beta\mid\:{is} \\ $$$${equal}\:{to} \\ $$
Answered by $@ty@m last updated on 02/Sep/17
Let the common root be p  ⇒(p+α)^2 =1  & (p+β)^2 =1  Case−I. p+α=1, p+β=1  ⇒α=β  ⇒both equations are same.  Case−II. p+α=1 & p+β=−1  ⇒α−β=2  Case−III.p+α=−1 & p+β=1  ⇒−(α−β)=2⇒(α−β)=−2  Combining the results of Case II  and Case−III, we get  ∣α−β∣=2
$${Let}\:{the}\:{common}\:{root}\:{be}\:{p} \\ $$$$\Rightarrow\left({p}+\alpha\right)^{\mathrm{2}} =\mathrm{1}\:\:\&\:\left({p}+\beta\right)^{\mathrm{2}} =\mathrm{1} \\ $$$${Case}−{I}.\:{p}+\alpha=\mathrm{1},\:{p}+\beta=\mathrm{1} \\ $$$$\Rightarrow\alpha=\beta \\ $$$$\Rightarrow{both}\:{equations}\:{are}\:{same}. \\ $$$${Case}−{II}.\:{p}+\alpha=\mathrm{1}\:\&\:{p}+\beta=−\mathrm{1} \\ $$$$\Rightarrow\alpha−\beta=\mathrm{2} \\ $$$${Case}−{III}.{p}+\alpha=−\mathrm{1}\:\&\:{p}+\beta=\mathrm{1} \\ $$$$\Rightarrow−\left(\alpha−\beta\right)=\mathrm{2}\Rightarrow\left(\alpha−\beta\right)=−\mathrm{2} \\ $$$${Combining}\:{the}\:{results}\:{of}\:{Case}\:{II} \\ $$$${and}\:{Case}−{III},\:{we}\:{get} \\ $$$$\mid\alpha−\beta\mid=\mathrm{2} \\ $$
Commented by Tinkutara last updated on 02/Sep/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *