Menu Close

if-the-first-and-fifth-terms-of-arithmetic-peogression-are-equal-and-the-seventh-and-fourtenth-terms-of-another-arithmetic-are-equal-then-show-that-the-first-term-from-the-first-arithmetic-is-equal-th




Question Number 82839 by M±th+et£s last updated on 24/Feb/20
if the first and fifth terms of arithmetic  peogression are equal and the seventh  and fourtenth terms of another arithmetic are  equal then show that the first term from  the first arithmetic is equal the tenth  from the second one  and so sorry because my english is  not so good
$${if}\:{the}\:{first}\:{and}\:{fifth}\:{terms}\:{of}\:{arithmetic} \\ $$$${peogression}\:{are}\:{equal}\:{and}\:{the}\:{seventh} \\ $$$${and}\:{fourtenth}\:{terms}\:{of}\:{another}\:{arithmetic}\:{are} \\ $$$${equal}\:{then}\:{show}\:{that}\:{the}\:{first}\:{term}\:{from} \\ $$$${the}\:{first}\:{arithmetic}\:{is}\:{equal}\:{the}\:{tenth} \\ $$$${from}\:{the}\:{second}\:{one} \\ $$$${and}\:{so}\:{sorry}\:{because}\:{my}\:{english}\:{is} \\ $$$${not}\:{so}\:{good} \\ $$
Commented by M±th+et£s last updated on 24/Feb/20
again iam realy so so sorry  A_9 =B_(10)
$${again}\:{iam}\:{realy}\:{so}\:{so}\:{sorry} \\ $$$${A}_{\mathrm{9}} ={B}_{\mathrm{10}} \\ $$
Commented by mr W last updated on 24/Feb/20
you can select “edit post” to fix   mistakes in your question, instead  of adding comments.
$${you}\:{can}\:{select}\:“{edit}\:{post}''\:{to}\:{fix}\: \\ $$$${mistakes}\:{in}\:{your}\:{question},\:{instead} \\ $$$${of}\:{adding}\:{comments}. \\ $$
Commented by M±th+et£s last updated on 24/Feb/20
Commented by M±th+et£s last updated on 24/Feb/20
i cant like you see and  i dont now why
$${i}\:{cant}\:{like}\:{you}\:{see}\:{and}\:\:{i}\:{dont}\:{now}\:{why} \\ $$
Commented by M±th+et£s last updated on 24/Feb/20
  i mean   A_1 +A_5 =B_7 +B_(14)   then show that   A_(10) =B_1   sorry there is wrong in the question   formula
$$ \\ $$$${i}\:{mean}\: \\ $$$${A}_{\mathrm{1}} +{A}_{\mathrm{5}} ={B}_{\mathrm{7}} +{B}_{\mathrm{14}} \\ $$$${then}\:{show}\:{that}\: \\ $$$${A}_{\mathrm{10}} ={B}_{\mathrm{1}} \\ $$$${sorry}\:{there}\:{is}\:{wrong}\:{in}\:{the}\:{question}\: \\ $$$${formula} \\ $$
Commented by M±th+et£s last updated on 24/Feb/20
A_1 =B_(10) ^(       ∗∗∗∗)
$${A}_{\mathrm{1}} ={B}_{\mathrm{10}} ^{\:\:\:\:\:\:\:\ast\ast\ast\ast} \\ $$
Commented by mr W last updated on 24/Feb/20
you meant you can′t see it like this:
$${you}\:{meant}\:{you}\:{can}'{t}\:{see}\:{it}\:{like}\:{this}: \\ $$
Commented by mr W last updated on 24/Feb/20

Leave a Reply

Your email address will not be published. Required fields are marked *