Menu Close

If-the-first-term-and-n-th-term-of-G-P-are-a-and-b-respectively-p-is-the-product-of-n-terms-Prove-that-p-2-ab-n-




Question Number 47628 by 786786AM last updated on 12/Nov/18
If the first term and n^(th)  term of G.P.,  are a and b respectively,   p is the product of n terms. Prove that p^2  = (ab)^n .
IfthefirsttermandnthtermofG.P.,areaandbrespectively,pistheproductofnterms.Provethatp2=(ab)n.
Answered by math1967 last updated on 12/Nov/18
P=a.ar.....ar^(n−1)      [r=common ratio]   P=a^n .r^(1+2+.....+(n−1))    P=a^n .r^(((n−1)(n−1+1))/2)   P=a^n .r^((n(n−1))/2)   P^2 =a^(2n) .r^(n(n−1))   P^2 =(a.ar^(n−1) )^n   ∴P^2 =(ab)^n     [∵ b=ar^(n−1) ]
P=a.ar..arn1[r=commonratio]P=an.r1+2+..+(n1)P=an.r(n1)(n1+1)2P=an.rn(n1)2P2=a2n.rn(n1)P2=(a.arn1)nP2=(ab)n[b=arn1]

Leave a Reply

Your email address will not be published. Required fields are marked *