Menu Close

If-the-function-f-x-satisfies-lim-x-1-f-x-2-x-2-1-pi-evaluate-lim-x-1-f-x-




Question Number 27701 by NECx last updated on 13/Jan/18
If the function f(x) satisfies  lim_(x→1)   ((f(x)−2)/(x^2 −1)) =π, evaluate lim_(x→1) f(x)
Ifthefunctionf(x)satisfieslimx1f(x)2x21=π,evaluatelimx1f(x)
Commented by abdo imad last updated on 21/Jan/18
⇔ lim_(x→1)      ((f(x)−2 −π(x^2 −1))/(x^2 −1))=0 so we must have  lim_(x→1) f(x)−2−π(x^2 −1)=0 in order to find the form (0/0)  ⇒ lim_(x→1) f(x)=2   let verify this number by hospital   theorem lim_(x→1) ((f^′ (x) −2πx)/(2x))=0 ⇒lim_(x→1) f^′ (x)=2π so  we must have lim_(x→1)  f(x)=2 and lim_(x→1) f^′ (x)=2π .
limx1f(x)2π(x21)x21=0sowemusthavelimx1f(x)2π(x21)=0inordertofindtheform00limx1f(x)=2letverifythisnumberbyhospitaltheoremlimx1f(x)2πx2x=0limx1f(x)=2πsowemusthavelimx1f(x)=2andlimx1f(x)=2π.
Answered by mrW2 last updated on 13/Jan/18
lim_(x→1) f(x)=2
limx1f(x)=2
Commented by NECx last updated on 13/Jan/18
how?
how?
Commented by mrW2 last updated on 14/Jan/18
if lim_(x→1)  f(x)≠2,  lim_(x→1)  ((f(x)−2)/(x^2 −1))=((finite)/0)→∞≠π
iflimx1f(x)2,limx1f(x)2x21=finite0π
Commented by abdo imad last updated on 21/Jan/18
this condition is unsufficient....
thisconditionisunsufficient.

Leave a Reply

Your email address will not be published. Required fields are marked *