Menu Close

If-the-function-of-f-is-continous-in-R-and-0-x-f-t-dt-x-1-t-2-f-t-dt-2x-2-4x-c-x-R-The-value-of-constant-c-is-




Question Number 83819 by jagoll last updated on 06/Mar/20
If the function of f is continous  in R and ∫ _0 ^( x)  f(t)dt = ∫ _x ^( 1) t^2 f(t) dt +   2x^2 +4x+c , ∀x∈R.  The value of constant c is
IfthefunctionoffiscontinousinRandx0f(t)dt=1xt2f(t)dt+2x2+4x+c,xR.Thevalueofconstantcis
Answered by john santu last updated on 06/Mar/20
(d/dx)[ ∫ _0 ^( x)  f(t)dt ] = (d/dx) [ ∫ _x ^( 1) t^2  f(t) dt +   2x^2 +4x+c ]   f(x) = −x^2  f(x) + 4x + 4   (1+x^2 ) f(x) = 4x+4   f(x) = ((4x+4)/(x^2 +1)) ⇒ f(t) = ((4t+4)/(t^2 +1))  (1) ∫ _0 ^( x)  ((2(2t))/(t^2 +1)) dt + ∫ _0 ^( x)  (4/(t^2 +1)) dt=  2 ln ∣ x^2 +1∣ + 4 tan^(−1) (x)  (2) ∫ _x ^( 1)  ((4t^3 +4t^2 )/(t^2 +1)) dt + 2x^2 +4x+c =  −2x^2 −4x+6 +∫ _x ^( 1)  ((4−4t)/(t^2 +1)) dt +2x^2 −4x+c  = 6+c + ∫ _1 ^( x)  (4/(t^2 +1)) dt − 2∫ _1 ^( x)  ((2t)/(t^2 +1)) dt  = 6+c + 4 tan^(−1) (x)−π−2 ∫  _1 ^x  (( d(t^2 +1))/(t^2 +1))  = 6+c + 4tan^(−1) (x)−π−2 ln ∣x^2 +1∣−ln (4)  ∴ c = 6 − π −ln 4
ddx[x0f(t)dt]=ddx[1xt2f(t)dt+2x2+4x+c]f(x)=x2f(x)+4x+4(1+x2)f(x)=4x+4f(x)=4x+4x2+1f(t)=4t+4t2+1(1)x02(2t)t2+1dt+x04t2+1dt=2lnx2+1+4tan1(x)(2)1x4t3+4t2t2+1dt+2x2+4x+c=2x24x+6+1x44tt2+1dt+2x24x+c=6+c+x14t2+1dt2x12tt2+1dt=6+c+4tan1(x)π2x1d(t2+1)t2+1=6+c+4tan1(x)π2lnx2+1ln(4)c=6πln4
Commented by jagoll last updated on 06/Mar/20
waw...thank you very much
wawthankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *