Question Number 95260 by i jagooll last updated on 24/May/20
$$\mathrm{if}\:\mathrm{the}\:\mathrm{line}\:\mathrm{3x}+\mathrm{2y}−\mathrm{1}=\mathrm{0}\:\mathrm{transformed} \\ $$$$\mathrm{by}\:\mathrm{matrix}\:\mathrm{A}=\begin{pmatrix}{\mathrm{1}\:\:\:\mathrm{a}}\\{\mathrm{b}\:\:\:\mathrm{2}}\end{pmatrix}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{image}\:\mathrm{is}\:\mathrm{the}\:\mathrm{line}\:\mathrm{2x}+\mathrm{8y}+\mathrm{c}=\mathrm{0} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}×\mathrm{b}×\mathrm{c}\: \\ $$
Commented by mr W last updated on 24/May/20
$$\left({x},{y}\right)\rightarrow\left({u},{v}\right)\:{with}\:\:\mathrm{A}=\begin{pmatrix}{\mathrm{1}\:\:\:\mathrm{a}}\\{\mathrm{b}\:\:\:\mathrm{2}}\end{pmatrix}\: \\ $$$${u}={x}+{ay} \\ $$$${v}={bx}+\mathrm{2}{y} \\ $$$$\mathrm{2}\left({x}+{ay}\right)+\mathrm{8}\left({bx}+\mathrm{2}{y}\right)+{c}=\mathrm{0} \\ $$$$\mathrm{2}\left(\mathrm{1}+\mathrm{4}{b}\right){x}+\mathrm{2}\left({a}+\mathrm{8}\right){y}+{c}=\mathrm{0} \\ $$$$\equiv\mathrm{3}{x}+\mathrm{2}{y}−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{2}\left(\mathrm{1}+\mathrm{4}{b}\right)=\mathrm{3}\:\Rightarrow{b}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\mathrm{2}\left({a}+\mathrm{8}\right)=\mathrm{2}\:\Rightarrow{a}=−\mathrm{7} \\ $$$${c}=−\mathrm{1} \\ $$$$\Rightarrow{a}×{b}×{c}=\frac{\mathrm{7}}{\mathrm{8}} \\ $$
Commented by mr W last updated on 24/May/20
$${i}\:{am}\:{not}\:{sure}\:{if}\:{i}\:{understand}\:{the} \\ $$$${question}\:{correctly}.\:{please}\:{check}! \\ $$
Commented by i jagooll last updated on 24/May/20
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}.\: \\ $$$$\mathrm{you}\:\mathrm{and}\:\mathrm{sir}\:\mathrm{john}\:\mathrm{got}\:\mathrm{the}\:\mathrm{same}\:\mathrm{result} \\ $$
Answered by john santu last updated on 24/May/20
$$\begin{pmatrix}{\mathrm{x}'}\\{\mathrm{y}^{'} }\end{pmatrix}\:=\:\begin{pmatrix}{\mathrm{1}\:\:\:\mathrm{a}}\\{\mathrm{b}\:\:\:\mathrm{2}}\end{pmatrix}\:\begin{pmatrix}{\mathrm{x}}\\{\mathrm{y}}\end{pmatrix}\:=\:\begin{pmatrix}{\mathrm{x}+\mathrm{ay}}\\{\mathrm{bx}+\mathrm{2y}}\end{pmatrix} \\ $$$$\mathrm{image}\:\mathrm{of}\:\mathrm{the}\:\mathrm{line}\:\mathrm{2x}'+\mathrm{8y}'+\mathrm{c}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{2}\left(\mathrm{x}+\mathrm{ay}\right)+\mathrm{8}\left(\mathrm{bx}+\mathrm{2y}\right)+\mathrm{c}\:=\:\mathrm{0} \\ $$$$\mathrm{it}\:\mathrm{similar}\:\mathrm{to}\:\mathrm{line}\:\mathrm{3x}+\mathrm{2y}−\mathrm{1}\:=\:\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{2}+\mathrm{8b}\right)\mathrm{x}+\left(\mathrm{2a}+\mathrm{16}\right)\mathrm{y}+\mathrm{c}\:=\:\mathrm{0} \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{2}+\mathrm{8b}\:=\:\mathrm{3}\:\Rightarrow\mathrm{b}\:=\:\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\mathrm{2a}+\mathrm{16}\:=\:\mathrm{2}\:\Rightarrow\:\mathrm{a}\:=\:−\mathrm{7}\: \\ $$$$\mathrm{and}\:\mathrm{c}\:=\:−\mathrm{1}\:\mathrm{so}\:\mathrm{a}×\mathrm{b}×\mathrm{c}\:=\:\frac{\mathrm{7}}{\mathrm{8}}\:.\: \\ $$