Menu Close

if-the-line-px-qy-r-tangents-the-ellipse-x-2-a-2-y-2-b-2-1-then-1-prove-a-2-p-2-b-2-q-2-r-2-2-find-the-coordinates-of-the-touching-point-




Question Number 157926 by mr W last updated on 29/Oct/21
if the line px+qy=r tangents the  ellipse (x^2 /a^2 )+(y^2 /b^2 )=1, then   1) prove a^2 p^2 +b^2 q^2 =r^2    2) find the coordinates of the        touching point.
ifthelinepx+qy=rtangentstheellipsex2a2+y2b2=1,then1)provea2p2+b2q2=r22)findthecoordinatesofthetouchingpoint.
Answered by mindispower last updated on 29/Oct/21
.... paramatric of elips{(acos(t),bsin(t))),t∈[0,2π[  M′(t)=(−asin(t),bcos(t))  M(t)∈ Line pacos(t)+qbsin(t)=r...(1)  M′(t) director vector and (−q,p) line director⇒  −qbcos(t)+pasin(t)=0...  (1)^2 +(2)^2  ⇔p^2 a^2 cos^2 (t)+q^2 b^2 sin^2 (t)+2paqbsin(t)cos(t)  +q^2 b^2 cos^2 (t)+p^2 a^2 sin^2 (t)−2abpqsin(t)cos(t)=r^2 +0  ⇔a^2 p^2 +b^2 q^2 =r^2    { ((−qbcos(t)+pasin(t)=0....∗sin(t)..1)),((pacos(t)+qbsin(t)=r......∗cos(t)....2)) :}  (1) sin(t)cos(t)≠0  ⇒(1)+(2) pa=rcos(t)⇒cos(t)=((pa)/r)  M=(((a^2 p)/r),((b^2 q)/r))  sin(t)=((qb)/r)  sin(t)=0⇒−qbcos(t)=0,⇒q=0  pacos(t)=r⇒cos(t)=(r/(pa))⇒∣(r/(pa))∣=1  in this case the line is x=(r/p), vertical lign  M((r/p),0)  cos(t)=0⇒p=0  sin(t)=(r/(qb))......The lign is y=(r/q)=^ +_− 1 vertical line  M(0,(r/q))
.paramatricofelips{(acos(t),bsin(t))),t[0,2π[M(t)=(asin(t),bcos(t))M(t)Linepacos(t)+qbsin(t)=r(1)M(t)directorvectorand(q,p)linedirectorqbcos(t)+pasin(t)=0(1)2+(2)2p2a2cos2(t)+q2b2sin2(t)+2paqbsin(t)cos(t)+q2b2cos2(t)+p2a2sin2(t)2abpqsin(t)cos(t)=r2+0a2p2+b2q2=r2{qbcos(t)+pasin(t)=0.sin(t)..1pacos(t)+qbsin(t)=rcos(t).2(1)sin(t)cos(t)0(1)+(2)pa=rcos(t)cos(t)=parM=(a2pr,b2qr)sin(t)=qbrsin(t)=0qbcos(t)=0,q=0pacos(t)=rcos(t)=rpa⇒∣rpa∣=1inthiscasethelineisx=rp,verticallignM(rp,0)cos(t)=0p=0sin(t)=rqbThelignisy=rq=+1verticallineM(0,rq)
Commented by mr W last updated on 30/Oct/21
thanks alot!
thanksalot!
Commented by mindispower last updated on 02/Nov/21
pleasur sir havea good day
pleasursirhaveagoodday
Answered by som(math1967) last updated on 30/Oct/21
px+qy=r   ⇒y=((r−px)/q)   (x^2 /a^2 ) +(y^2 /b^2 )=1  or.  (x^2 /a^2 ) +(((r−px)^2 )/(b^2 q^2 ))=1  or. x^2 b^2 q^2 +a^2 p^2 x^2 −2a^2 pxr+r^2 a^2 =a^2 b^2 q^2   or.(b^2 q^2 +a^2 p^2 )x^2  −2a^2 pxr+a^2 r^2 −a^2 b^2 q^2 =0 ...1)  px+qy=r is tangents of (x^2 /a^2 ) +(y^2 /b^2 )=1  ∴ (−2a^2 pr)^2 −4(b^2 q^2 +a^2 p^2 )(a^2 r^2 −a^2 b^2 q^2 )=0  [ for equal roots discriminant is 0]  4a^2 [a^2 p^2 r^2 −(b^2 q^2 +a^2 p^2 )(r^2 −b^2 q^2 )]=0  a^2 p^2 r^2 −b^2 q^2 r^2  +b^4 q^4 −a^2 p^2 r^2 +a^2 b^2 p^2 q^2 =0  b^2 q^2 (b^2 q^2 +a^2 p^2 −r^2 )=0  ∴ a^2 p^2 +b^2 q^2 =r^2   from equn. 1  (b^2 q^2 +a^2 p^2 )x^2  −2a^2 pxr+a^2 r^2 −a^2 b^2 q^2 =0  [(a^2 p^2 +b^2 q^2 =r^2 ]  r^2 x^2 −2a^2 pxr+a^2 (r^2 −b^2 q^2 )=0  r^2 x^2 −2.rx.a^2 p+a^4 .p^2 =0  x=((a^2 p)/r)  y=((r−px)/q)=((r−((a^2 p^2 )/r))/q)=((r^2 −a^2 p^2 )/(qr))  (((a^2 p)/r),((r^2 −a^2 p^2 )/(qr)))  (((a^2 p)/r),((b^2 q)/r))
px+qy=ry=rpxqx2a2+y2b2=1or.x2a2+(rpx)2b2q2=1or.x2b2q2+a2p2x22a2pxr+r2a2=a2b2q2or.(b2q2+a2p2)x22a2pxr+a2r2a2b2q2=01)px+qy=ristangentsofx2a2+y2b2=1(2a2pr)24(b2q2+a2p2)(a2r2a2b2q2)=0[forequalrootsdiscriminantis0]4a2[a2p2r2(b2q2+a2p2)(r2b2q2)]=0a2p2r2b2q2r2+b4q4a2p2r2+a2b2p2q2=0b2q2(b2q2+a2p2r2)=0a2p2+b2q2=r2fromequn.1(b2q2+a2p2)x22a2pxr+a2r2a2b2q2=0[(a2p2+b2q2=r2]r2x22a2pxr+a2(r2b2q2)=0r2x22.rx.a2p+a4.p2=0x=a2pry=rpxq=ra2p2rq=r2a2p2qr(a2pr,r2a2p2qr)(a2pr,b2qr)
Commented by mr W last updated on 30/Oct/21
thanks alot!
thanksalot!

Leave a Reply

Your email address will not be published. Required fields are marked *