Question Number 157926 by mr W last updated on 29/Oct/21
$${if}\:{the}\:{line}\:{px}+{qy}={r}\:{tangents}\:{the} \\ $$$${ellipse}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1},\:{then}\: \\ $$$$\left.\mathrm{1}\right)\:{prove}\:\boldsymbol{{a}}^{\mathrm{2}} \boldsymbol{{p}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} \boldsymbol{{q}}^{\mathrm{2}} =\boldsymbol{{r}}^{\mathrm{2}} \: \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{coordinates}\:{of}\:{the}\: \\ $$$$\:\:\:\:\:{touching}\:{point}. \\ $$
Answered by mindispower last updated on 29/Oct/21
$$….\:{paramatric}\:{of}\:{elips}\left\{\left({acos}\left({t}\right),{bsin}\left({t}\right)\right)\right),{t}\in\left[\mathrm{0},\mathrm{2}\pi\left[\right.\right. \\ $$$${M}'\left({t}\right)=\left(−{asin}\left({t}\right),{bcos}\left({t}\right)\right) \\ $$$${M}\left({t}\right)\in\:{Line}\:{pacos}\left({t}\right)+{qbsin}\left({t}\right)={r}…\left(\mathrm{1}\right) \\ $$$${M}'\left({t}\right)\:{director}\:{vector}\:{and}\:\left(−{q},{p}\right)\:{line}\:{director}\Rightarrow \\ $$$$−{qbcos}\left({t}\right)+{pasin}\left({t}\right)=\mathrm{0}… \\ $$$$\left(\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{2}\right)^{\mathrm{2}} \:\Leftrightarrow{p}^{\mathrm{2}} {a}^{\mathrm{2}} {cos}^{\mathrm{2}} \left({t}\right)+{q}^{\mathrm{2}} {b}^{\mathrm{2}} {sin}^{\mathrm{2}} \left({t}\right)+\mathrm{2}{paqbsin}\left({t}\right){cos}\left({t}\right) \\ $$$$+{q}^{\mathrm{2}} {b}^{\mathrm{2}} {cos}^{\mathrm{2}} \left({t}\right)+{p}^{\mathrm{2}} {a}^{\mathrm{2}} {sin}^{\mathrm{2}} \left({t}\right)−\mathrm{2}{abpqsin}\left({t}\right){cos}\left({t}\right)={r}^{\mathrm{2}} +\mathrm{0} \\ $$$$\Leftrightarrow{a}^{\mathrm{2}} {p}^{\mathrm{2}} +{b}^{\mathrm{2}} {q}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\begin{cases}{−{qbcos}\left({t}\right)+{pasin}\left({t}\right)=\mathrm{0}….\ast{sin}\left({t}\right)..\mathrm{1}}\\{{pacos}\left({t}\right)+{qbsin}\left({t}\right)={r}……\ast{cos}\left({t}\right)….\mathrm{2}}\end{cases} \\ $$$$\left(\mathrm{1}\right)\:{sin}\left({t}\right){cos}\left({t}\right)\neq\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{1}\right)+\left(\mathrm{2}\right)\:{pa}={rcos}\left({t}\right)\Rightarrow{cos}\left({t}\right)=\frac{{pa}}{{r}} \\ $$$${M}=\left(\frac{{a}^{\mathrm{2}} {p}}{{r}},\frac{{b}^{\mathrm{2}} {q}}{{r}}\right) \\ $$$${sin}\left({t}\right)=\frac{{qb}}{{r}} \\ $$$${sin}\left({t}\right)=\mathrm{0}\Rightarrow−{qbcos}\left({t}\right)=\mathrm{0},\Rightarrow{q}=\mathrm{0} \\ $$$${pacos}\left({t}\right)={r}\Rightarrow{cos}\left({t}\right)=\frac{{r}}{{pa}}\Rightarrow\mid\frac{{r}}{{pa}}\mid=\mathrm{1} \\ $$$${in}\:{this}\:{case}\:{the}\:{line}\:{is}\:{x}=\frac{{r}}{{p}},\:{vertical}\:{lign} \\ $$$${M}\left(\frac{{r}}{{p}},\mathrm{0}\right) \\ $$$${cos}\left({t}\right)=\mathrm{0}\Rightarrow{p}=\mathrm{0} \\ $$$${sin}\left({t}\right)=\frac{{r}}{{qb}}……{The}\:{lign}\:{is}\:{y}=\frac{{r}}{{q}}\overset{} {=}\underset{−} {+}\mathrm{1}\:{vertical}\:{line} \\ $$$${M}\left(\mathrm{0},\frac{{r}}{{q}}\right) \\ $$$$ \\ $$$$ \\ $$
Commented by mr W last updated on 30/Oct/21
$${thanks}\:{alot}! \\ $$
Commented by mindispower last updated on 02/Nov/21
$${pleasur}\:{sir}\:{havea}\:{good}\:{day} \\ $$
Answered by som(math1967) last updated on 30/Oct/21
$${px}+{qy}={r}\:\:\:\Rightarrow{y}=\frac{{r}−{px}}{{q}} \\ $$$$\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${or}.\:\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:+\frac{\left({r}−{px}\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} {q}^{\mathrm{2}} }=\mathrm{1} \\ $$$${or}.\:{x}^{\mathrm{2}} {b}^{\mathrm{2}} {q}^{\mathrm{2}} +{a}^{\mathrm{2}} {p}^{\mathrm{2}} {x}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} {pxr}+{r}^{\mathrm{2}} {a}^{\mathrm{2}} ={a}^{\mathrm{2}} {b}^{\mathrm{2}} {q}^{\mathrm{2}} \\ $$$$\left.{or}.\left({b}^{\mathrm{2}} {q}^{\mathrm{2}} +{a}^{\mathrm{2}} {p}^{\mathrm{2}} \right){x}^{\mathrm{2}} \:−\mathrm{2}{a}^{\mathrm{2}} {pxr}+{a}^{\mathrm{2}} {r}^{\mathrm{2}} −{a}^{\mathrm{2}} {b}^{\mathrm{2}} {q}^{\mathrm{2}} =\mathrm{0}\:…\mathrm{1}\right) \\ $$$${px}+{qy}={r}\:{is}\:{tangents}\:{of}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\:+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\therefore\:\left(−\mathrm{2}{a}^{\mathrm{2}} {pr}\right)^{\mathrm{2}} −\mathrm{4}\left({b}^{\mathrm{2}} {q}^{\mathrm{2}} +{a}^{\mathrm{2}} {p}^{\mathrm{2}} \right)\left({a}^{\mathrm{2}} {r}^{\mathrm{2}} −{a}^{\mathrm{2}} {b}^{\mathrm{2}} {q}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\left[\:{for}\:{equal}\:{roots}\:{discriminant}\:{is}\:\mathrm{0}\right] \\ $$$$\mathrm{4}{a}^{\mathrm{2}} \left[{a}^{\mathrm{2}} {p}^{\mathrm{2}} {r}^{\mathrm{2}} −\left({b}^{\mathrm{2}} {q}^{\mathrm{2}} +{a}^{\mathrm{2}} {p}^{\mathrm{2}} \right)\left({r}^{\mathrm{2}} −{b}^{\mathrm{2}} {q}^{\mathrm{2}} \right)\right]=\mathrm{0} \\ $$$${a}^{\mathrm{2}} {p}^{\mathrm{2}} {r}^{\mathrm{2}} −{b}^{\mathrm{2}} {q}^{\mathrm{2}} {r}^{\mathrm{2}} \:+{b}^{\mathrm{4}} {q}^{\mathrm{4}} −{a}^{\mathrm{2}} {p}^{\mathrm{2}} {r}^{\mathrm{2}} +{a}^{\mathrm{2}} {b}^{\mathrm{2}} {p}^{\mathrm{2}} {q}^{\mathrm{2}} =\mathrm{0} \\ $$$${b}^{\mathrm{2}} {q}^{\mathrm{2}} \left({b}^{\mathrm{2}} {q}^{\mathrm{2}} +{a}^{\mathrm{2}} {p}^{\mathrm{2}} −{r}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\therefore\:\boldsymbol{{a}}^{\mathrm{2}} \boldsymbol{{p}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} \boldsymbol{{q}}^{\mathrm{2}} =\boldsymbol{{r}}^{\mathrm{2}} \\ $$$${from}\:{equn}.\:\mathrm{1} \\ $$$$\left({b}^{\mathrm{2}} {q}^{\mathrm{2}} +{a}^{\mathrm{2}} {p}^{\mathrm{2}} \right){x}^{\mathrm{2}} \:−\mathrm{2}{a}^{\mathrm{2}} {pxr}+{a}^{\mathrm{2}} {r}^{\mathrm{2}} −{a}^{\mathrm{2}} {b}^{\mathrm{2}} {q}^{\mathrm{2}} =\mathrm{0} \\ $$$$\left[\left(\boldsymbol{{a}}^{\mathrm{2}} \boldsymbol{{p}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} \boldsymbol{{q}}^{\mathrm{2}} =\boldsymbol{{r}}^{\mathrm{2}} \right]\right. \\ $$$${r}^{\mathrm{2}} {x}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} {pxr}+{a}^{\mathrm{2}} \left({r}^{\mathrm{2}} −{b}^{\mathrm{2}} {q}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${r}^{\mathrm{2}} {x}^{\mathrm{2}} −\mathrm{2}.{rx}.{a}^{\mathrm{2}} {p}+{a}^{\mathrm{4}} .{p}^{\mathrm{2}} =\mathrm{0} \\ $$$${x}=\frac{{a}^{\mathrm{2}} {p}}{{r}} \\ $$$${y}=\frac{{r}−{px}}{{q}}=\frac{{r}−\frac{{a}^{\mathrm{2}} {p}^{\mathrm{2}} }{{r}}}{{q}}=\frac{{r}^{\mathrm{2}} −{a}^{\mathrm{2}} {p}^{\mathrm{2}} }{{qr}} \\ $$$$\left(\frac{{a}^{\mathrm{2}} {p}}{{r}},\frac{{r}^{\mathrm{2}} −{a}^{\mathrm{2}} {p}^{\mathrm{2}} }{{qr}}\right) \\ $$$$\left(\frac{\boldsymbol{{a}}^{\mathrm{2}} \boldsymbol{{p}}}{\boldsymbol{{r}}},\frac{\boldsymbol{{b}}^{\mathrm{2}} \boldsymbol{{q}}}{\boldsymbol{{r}}}\right) \\ $$$$ \\ $$
Commented by mr W last updated on 30/Oct/21
$${thanks}\:{alot}! \\ $$