Menu Close

if-the-maximum-value-of-4sin-2-x-3cos-2-x-sin-x-2-cos-x-2-3-is-a-b-then-find-a-b-




Question Number 146876 by gsk2684 last updated on 16/Jul/21
if the maximum value of   4sin^2 x+3cos^2 x+sin (x/2)+cos (x/2)+3  is a+(√b) then find a+b
ifthemaximumvalueof4sin2x+3cos2x+sinx2+cosx2+3isa+bthenfinda+b
Answered by liberty last updated on 16/Jul/21
f(x)=4sin^2 x+3−3sin^2 x+3+sin ((x/2))+cos ((x/2))  f(x)=sin^2 x+sin ((x/2))+cos ((x/2))+6  f(x)=sin^2 x+sin ((x/2))+cos ((x/2))+6  f ′(x)=sin 2x+(1/2)cos ((x/2))−(1/2)sin ((x/2))=0  sin 2x = (1/2)sin ((x/2))−(1/2)cos ((x/2))  2sin 2x −sin ((x/2))+cos ((x/2))=0  let (x/2)=u →x=2u  2sin 4u+(cos u−sin u)=0  4sin 2u (cos^2 u−sin^2 u)+(cos u−sin u)=0  (cos u−sin u){4sin 2u(cos u+sin u)+1}=0  (•) cos u−sin u=0         cos u=sin u ⇒tan ((x/2))=1         x=(π/2)   f((π/2))= 1+6 +((√2)/2)+((√2)/2)=7+(√2)  f_(max) = 7+(√2) ≈ 8.414213   then  { ((a=7)),((b=2)) :} ⇒a+b=9
f(x)=4sin2x+33sin2x+3+sin(x2)+cos(x2)f(x)=sin2x+sin(x2)+cos(x2)+6f(x)=sin2x+sin(x2)+cos(x2)+6f(x)=sin2x+12cos(x2)12sin(x2)=0sin2x=12sin(x2)12cos(x2)2sin2xsin(x2)+cos(x2)=0letx2=ux=2u2sin4u+(cosusinu)=04sin2u(cos2usin2u)+(cosusinu)=0(cosusinu){4sin2u(cosu+sinu)+1}=0()cosusinu=0cosu=sinutan(x2)=1x=π2f(π2)=1+6+22+22=7+2fmax=7+28.414213then{a=7b=2a+b=9
Commented by gsk2684 last updated on 16/Jul/21
thank you
thankyou
Commented by liberty last updated on 16/Jul/21

Leave a Reply

Your email address will not be published. Required fields are marked *