Menu Close

If-the-points-3-5-4-2-and-6-2-are-the-vertices-of-a-triangle-i-Find-the-equation-of-the-perpendicular-bisector-of-the-sides-ii-Find-the-coordinate-of-the-circumcenter-The-circumcen




Question Number 43944 by Tawa1 last updated on 18/Sep/18
If the points (−3, 5) , (4, −2) and (6, 2) are the vertices of a triangle.  (i) Find the equation of the perpendicular bisector of the sides  (ii) Find the coordinate of the circumcenter. (The circumcenter of a  triangle is the point of intersection of the perpendicular bisector of  the side  (iii) Find the radius of the circumcircle.
$$\mathrm{If}\:\mathrm{the}\:\mathrm{points}\:\left(−\mathrm{3},\:\mathrm{5}\right)\:,\:\left(\mathrm{4},\:−\mathrm{2}\right)\:\mathrm{and}\:\left(\mathrm{6},\:\mathrm{2}\right)\:\mathrm{are}\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}. \\ $$$$\left(\mathrm{i}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{perpendicular}\:\mathrm{bisector}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sides} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{coordinate}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circumcenter}.\:\left(\mathrm{The}\:\mathrm{circumcenter}\:\mathrm{of}\:\mathrm{a}\right. \\ $$$$\mathrm{triangle}\:\mathrm{is}\:\mathrm{the}\:\mathrm{point}\:\mathrm{of}\:\mathrm{intersection}\:\mathrm{of}\:\mathrm{the}\:\mathrm{perpendicular}\:\mathrm{bisector}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{side} \\ $$$$\left(\mathrm{iii}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circumcircle}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Sep/18
A(−3,5)  B(4,−2)  C(6,2)  AB=  (y−5)=((−2−5)/(4+3))(x+3)  7y−35=−7x−21  7y+7x=14  mid of AB  ((−3+4)/2),((5−2)/2)  ((1/2),(3/2))  perpendicular to AB and passing through((1/2),(3/2)) is  perpdndiculR bisector of AB  now slope of AB  calculation  7y+7x=14  y=−x+2   m=−1  m_1 ×m_2 =−1  (−1)×m_2 =−1   m_2 =1  so ⊥ bisector of AB is (y−(3/2))=1(x−(1/2))  2y−3=2x−1  2y−2x=2  y−x=1  similar way calculate other ⊥ bisector  of BC   B(4,−2) C(6,2)  BC eqn is y+2=((2+2)/(6−4))(x−4)  2y+4=4x−16  2y−4x+20=0     y−2x+10=0  slope=2  m_1 ×m_2 =−1    2×m_2 =−1      m_2 =((−1)/2)  mid point of BC  ((4+6)/2)′((−2+2)/2)=(5,0)  eqn of ⊥bisector of BC is  y−0=((−1)/2)(x−5)  2y+x−5=0  intersecting  point between y−x=1  and 2y+x−5=0  is the centre of circle  y−x=1  2y+x=5  3y=6    y=2      x=1  so centre if cir cle is (1,2)  eqn   (x−1)^2 +(y−2)^2 =r^2   r=distance between (1,2) and(−3,5)←A point  r=(√((−3−1)^2 +(5−2)^2 )) =(√(16+9)) =5  so eqn circle  (x−1)^2 +(y−2)^2 =5^2           another way  ii)eqn of circle is x^2 +y^2 +2gx+2fy+c=0  passes through(−3,5) (4,−2) and(6,2)  9+25−6g+10f+c=0  ←eqn 1  16+4+8g−4f+c=0 ←eqn 2  36+4+12g+4f+c=0 ←eqn 3f circle  34−6g+10f+c=0  20+8g−4f+c=0  40+12g+4f+c=0  eqn1  −eqn2  14−14g+14f=0   1−g+f=0  eqn2   −eqn 3  −20−4g−8f=0  5+g+2f=0  solve  5+g+2f=0  1−g+f=0  6+3f=0    f=−2     g=−1  centre is (−g,−f)=(1,2)  put g=−1 anf f=−2 in eqn 1 to[find c  34−6g+10f+c=0  34−6(−1)+10(−2)+c=0  34+6−20+c=0  c=−20  radius r=(√(g^2 +f^2 −c))   r=(√(1+4+20)) =5  eqn circle   (x−1)^2 +(y−2)^2 =5^2
$${A}\left(−\mathrm{3},\mathrm{5}\right)\:\:{B}\left(\mathrm{4},−\mathrm{2}\right)\:\:{C}\left(\mathrm{6},\mathrm{2}\right) \\ $$$${AB}=\:\:\left({y}−\mathrm{5}\right)=\frac{−\mathrm{2}−\mathrm{5}}{\mathrm{4}+\mathrm{3}}\left({x}+\mathrm{3}\right) \\ $$$$\mathrm{7}{y}−\mathrm{35}=−\mathrm{7}{x}−\mathrm{21} \\ $$$$\mathrm{7}{y}+\mathrm{7}{x}=\mathrm{14} \\ $$$${mid}\:{of}\:{AB}\:\:\frac{−\mathrm{3}+\mathrm{4}}{\mathrm{2}},\frac{\mathrm{5}−\mathrm{2}}{\mathrm{2}}\:\:\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{3}}{\mathrm{2}}\right) \\ $$$${perpendicular}\:{to}\:{AB}\:{and}\:{passing}\:{through}\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{3}}{\mathrm{2}}\right)\:{is} \\ $$$${perpdndiculR}\:{bisector}\:{of}\:{AB} \\ $$$${now}\:{slope}\:{of}\:{AB}\:\:{calculation} \\ $$$$\mathrm{7}{y}+\mathrm{7}{x}=\mathrm{14} \\ $$$${y}=−{x}+\mathrm{2}\:\:\:{m}=−\mathrm{1} \\ $$$${m}_{\mathrm{1}} ×{m}_{\mathrm{2}} =−\mathrm{1} \\ $$$$\left(−\mathrm{1}\right)×{m}_{\mathrm{2}} =−\mathrm{1}\:\:\:{m}_{\mathrm{2}} =\mathrm{1} \\ $$$${so}\:\bot\:{bisector}\:{of}\:{AB}\:{is}\:\left({y}−\frac{\mathrm{3}}{\mathrm{2}}\right)=\mathrm{1}\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\mathrm{2}{y}−\mathrm{3}=\mathrm{2}{x}−\mathrm{1} \\ $$$$\mathrm{2}{y}−\mathrm{2}{x}=\mathrm{2} \\ $$$${y}−{x}=\mathrm{1} \\ $$$$\boldsymbol{{similar}}\:\boldsymbol{{way}}\:\boldsymbol{{calculate}}\:\boldsymbol{{other}}\:\bot\:\boldsymbol{{bisector}} \\ $$$${of}\:{BC}\:\:\:{B}\left(\mathrm{4},−\mathrm{2}\right)\:{C}\left(\mathrm{6},\mathrm{2}\right) \\ $$$${BC}\:{eqn}\:{is}\:{y}+\mathrm{2}=\frac{\mathrm{2}+\mathrm{2}}{\mathrm{6}−\mathrm{4}}\left({x}−\mathrm{4}\right) \\ $$$$\mathrm{2}{y}+\mathrm{4}=\mathrm{4}{x}−\mathrm{16} \\ $$$$\mathrm{2}{y}−\mathrm{4}{x}+\mathrm{20}=\mathrm{0}\:\:\:\:\:{y}−\mathrm{2}{x}+\mathrm{10}=\mathrm{0} \\ $$$${slope}=\mathrm{2} \\ $$$${m}_{\mathrm{1}} ×{m}_{\mathrm{2}} =−\mathrm{1}\:\:\:\:\mathrm{2}×{m}_{\mathrm{2}} =−\mathrm{1}\:\:\:\:\:\:{m}_{\mathrm{2}} =\frac{−\mathrm{1}}{\mathrm{2}} \\ $$$${mid}\:{point}\:{of}\:{BC}\:\:\frac{\mathrm{4}+\mathrm{6}}{\mathrm{2}}'\frac{−\mathrm{2}+\mathrm{2}}{\mathrm{2}}=\left(\mathrm{5},\mathrm{0}\right) \\ $$$${eqn}\:{of}\:\bot{bisector}\:{of}\:{BC}\:{is} \\ $$$${y}−\mathrm{0}=\frac{−\mathrm{1}}{\mathrm{2}}\left({x}−\mathrm{5}\right) \\ $$$$\mathrm{2}{y}+{x}−\mathrm{5}=\mathrm{0} \\ $$$${intersecting}\:\:{point}\:{between}\:{y}−{x}=\mathrm{1} \\ $$$${and}\:\mathrm{2}{y}+{x}−\mathrm{5}=\mathrm{0} \\ $$$${is}\:{the}\:{centre}\:{of}\:{circle} \\ $$$${y}−{x}=\mathrm{1} \\ $$$$\mathrm{2}{y}+{x}=\mathrm{5} \\ $$$$\mathrm{3}{y}=\mathrm{6}\:\:\:\:{y}=\mathrm{2}\:\:\:\:\:\:{x}=\mathrm{1} \\ $$$${so}\:{centre}\:{if}\:{cir}\:{cle}\:{is}\:\left(\mathrm{1},\mathrm{2}\right) \\ $$$${eqn}\: \\ $$$$\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\left({y}−\mathrm{2}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${r}={distance}\:{between}\:\left(\mathrm{1},\mathrm{2}\right)\:{and}\left(−\mathrm{3},\mathrm{5}\right)\leftarrow{A}\:{point} \\ $$$${r}=\sqrt{\left(−\mathrm{3}−\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{5}−\mathrm{2}\right)^{\mathrm{2}} }\:=\sqrt{\mathrm{16}+\mathrm{9}}\:=\mathrm{5} \\ $$$${so}\:{eqn}\:{circle}\:\:\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\left({y}−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{5}^{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$${another}\:{way} \\ $$$$\left.\boldsymbol{{ii}}\right)\boldsymbol{{eqn}}\:{of}\:{circle}\:{is}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{gx}+\mathrm{2}{fy}+{c}=\mathrm{0} \\ $$$${passes}\:{through}\left(−\mathrm{3},\mathrm{5}\right)\:\left(\mathrm{4},−\mathrm{2}\right)\:{and}\left(\mathrm{6},\mathrm{2}\right) \\ $$$$\mathrm{9}+\mathrm{25}−\mathrm{6}{g}+\mathrm{10}{f}+{c}=\mathrm{0}\:\:\leftarrow{eqn}\:\mathrm{1} \\ $$$$\mathrm{16}+\mathrm{4}+\mathrm{8}{g}−\mathrm{4}{f}+{c}=\mathrm{0}\:\leftarrow{eqn}\:\mathrm{2} \\ $$$$\mathrm{36}+\mathrm{4}+\mathrm{12}{g}+\mathrm{4}{f}+{c}=\mathrm{0}\:\leftarrow{eqn}\:\mathrm{3}{f}\:{circle} \\ $$$$\mathrm{34}−\mathrm{6}{g}+\mathrm{10}{f}+{c}=\mathrm{0} \\ $$$$\mathrm{20}+\mathrm{8}{g}−\mathrm{4}{f}+{c}=\mathrm{0} \\ $$$$\mathrm{40}+\mathrm{12}{g}+\mathrm{4}{f}+{c}=\mathrm{0} \\ $$$${eqn}\mathrm{1}\:\:−{eqn}\mathrm{2} \\ $$$$\mathrm{14}−\mathrm{14}{g}+\mathrm{14}{f}=\mathrm{0}\:\:\:\mathrm{1}−{g}+{f}=\mathrm{0} \\ $$$${eqn}\mathrm{2}\:\:\:−{eqn}\:\mathrm{3} \\ $$$$−\mathrm{20}−\mathrm{4}{g}−\mathrm{8}{f}=\mathrm{0} \\ $$$$\mathrm{5}+{g}+\mathrm{2}{f}=\mathrm{0} \\ $$$${solve} \\ $$$$\mathrm{5}+{g}+\mathrm{2}{f}=\mathrm{0} \\ $$$$\mathrm{1}−{g}+{f}=\mathrm{0} \\ $$$$\mathrm{6}+\mathrm{3}{f}=\mathrm{0}\:\:\:\:{f}=−\mathrm{2}\:\:\:\:\:{g}=−\mathrm{1} \\ $$$${centre}\:{is}\:\left(−{g},−{f}\right)=\left(\mathrm{1},\mathrm{2}\right) \\ $$$${put}\:{g}=−\mathrm{1}\:{anf}\:{f}=−\mathrm{2}\:{in}\:{eqn}\:\mathrm{1}\:{to}\left[{find}\:{c}\right. \\ $$$$\mathrm{34}−\mathrm{6}{g}+\mathrm{10}{f}+{c}=\mathrm{0} \\ $$$$\mathrm{34}−\mathrm{6}\left(−\mathrm{1}\right)+\mathrm{10}\left(−\mathrm{2}\right)+{c}=\mathrm{0} \\ $$$$\mathrm{34}+\mathrm{6}−\mathrm{20}+{c}=\mathrm{0} \\ $$$${c}=−\mathrm{20} \\ $$$${radius}\:{r}=\sqrt{{g}^{\mathrm{2}} +{f}^{\mathrm{2}} −{c}}\: \\ $$$${r}=\sqrt{\mathrm{1}+\mathrm{4}+\mathrm{20}}\:=\mathrm{5} \\ $$$${eqn}\:{circle}\: \\ $$$$\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\left({y}−\mathrm{2}\right)^{\mathrm{2}} =\mathrm{5}^{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by Tawa1 last updated on 18/Sep/18
God bless you sir. I really appreciate
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *