Menu Close

If-the-points-3-5-4-2-and-6-2-are-the-vertices-of-a-triangle-i-Find-the-equation-of-the-perpendicular-bisector-of-the-sides-ii-Find-the-coordinate-of-the-circumcenter-The-circumcen




Question Number 43944 by Tawa1 last updated on 18/Sep/18
If the points (−3, 5) , (4, −2) and (6, 2) are the vertices of a triangle.  (i) Find the equation of the perpendicular bisector of the sides  (ii) Find the coordinate of the circumcenter. (The circumcenter of a  triangle is the point of intersection of the perpendicular bisector of  the side  (iii) Find the radius of the circumcircle.
Ifthepoints(3,5),(4,2)and(6,2)aretheverticesofatriangle.(i)Findtheequationoftheperpendicularbisectorofthesides(ii)Findthecoordinateofthecircumcenter.(Thecircumcenterofatriangleisthepointofintersectionoftheperpendicularbisectoroftheside(iii)Findtheradiusofthecircumcircle.
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Sep/18
A(−3,5)  B(4,−2)  C(6,2)  AB=  (y−5)=((−2−5)/(4+3))(x+3)  7y−35=−7x−21  7y+7x=14  mid of AB  ((−3+4)/2),((5−2)/2)  ((1/2),(3/2))  perpendicular to AB and passing through((1/2),(3/2)) is  perpdndiculR bisector of AB  now slope of AB  calculation  7y+7x=14  y=−x+2   m=−1  m_1 ×m_2 =−1  (−1)×m_2 =−1   m_2 =1  so ⊥ bisector of AB is (y−(3/2))=1(x−(1/2))  2y−3=2x−1  2y−2x=2  y−x=1  similar way calculate other ⊥ bisector  of BC   B(4,−2) C(6,2)  BC eqn is y+2=((2+2)/(6−4))(x−4)  2y+4=4x−16  2y−4x+20=0     y−2x+10=0  slope=2  m_1 ×m_2 =−1    2×m_2 =−1      m_2 =((−1)/2)  mid point of BC  ((4+6)/2)′((−2+2)/2)=(5,0)  eqn of ⊥bisector of BC is  y−0=((−1)/2)(x−5)  2y+x−5=0  intersecting  point between y−x=1  and 2y+x−5=0  is the centre of circle  y−x=1  2y+x=5  3y=6    y=2      x=1  so centre if cir cle is (1,2)  eqn   (x−1)^2 +(y−2)^2 =r^2   r=distance between (1,2) and(−3,5)←A point  r=(√((−3−1)^2 +(5−2)^2 )) =(√(16+9)) =5  so eqn circle  (x−1)^2 +(y−2)^2 =5^2           another way  ii)eqn of circle is x^2 +y^2 +2gx+2fy+c=0  passes through(−3,5) (4,−2) and(6,2)  9+25−6g+10f+c=0  ←eqn 1  16+4+8g−4f+c=0 ←eqn 2  36+4+12g+4f+c=0 ←eqn 3f circle  34−6g+10f+c=0  20+8g−4f+c=0  40+12g+4f+c=0  eqn1  −eqn2  14−14g+14f=0   1−g+f=0  eqn2   −eqn 3  −20−4g−8f=0  5+g+2f=0  solve  5+g+2f=0  1−g+f=0  6+3f=0    f=−2     g=−1  centre is (−g,−f)=(1,2)  put g=−1 anf f=−2 in eqn 1 to[find c  34−6g+10f+c=0  34−6(−1)+10(−2)+c=0  34+6−20+c=0  c=−20  radius r=(√(g^2 +f^2 −c))   r=(√(1+4+20)) =5  eqn circle   (x−1)^2 +(y−2)^2 =5^2
A(3,5)B(4,2)C(6,2)AB=(y5)=254+3(x+3)7y35=7x217y+7x=14midofAB3+42,522(12,32)perpendiculartoABandpassingthrough(12,32)isperpdndiculRbisectorofABnowslopeofABcalculation7y+7x=14y=x+2m=1m1×m2=1(1)×m2=1m2=1sobisectorofABis(y32)=1(x12)2y3=2x12y2x=2yx=1similarwaycalculateotherbisectorofBCB(4,2)C(6,2)BCeqnisy+2=2+264(x4)2y+4=4x162y4x+20=0y2x+10=0slope=2m1×m2=12×m2=1m2=12midpointofBC4+622+22=(5,0)eqnofbisectorofBCisy0=12(x5)2y+x5=0intersectingpointbetweenyx=1and2y+x5=0isthecentreofcircleyx=12y+x=53y=6y=2x=1socentreifcircleis(1,2)eqn(x1)2+(y2)2=r2r=distancebetween(1,2)and(3,5)Apointr=(31)2+(52)2=16+9=5soeqncircle(x1)2+(y2)2=52anotherwayii)eqnofcircleisx2+y2+2gx+2fy+c=0passesthrough(3,5)(4,2)and(6,2)9+256g+10f+c=0eqn116+4+8g4f+c=0eqn236+4+12g+4f+c=0eqn3fcircle346g+10f+c=020+8g4f+c=040+12g+4f+c=0eqn1eqn21414g+14f=01g+f=0eqn2eqn3204g8f=05+g+2f=0solve5+g+2f=01g+f=06+3f=0f=2g=1centreis(g,f)=(1,2)putg=1anff=2ineqn1to[findc346g+10f+c=0346(1)+10(2)+c=034+620+c=0c=20radiusr=g2+f2cr=1+4+20=5eqncircle(x1)2+(y2)2=52
Commented by Tawa1 last updated on 18/Sep/18
God bless you sir. I really appreciate
Godblessyousir.Ireallyappreciate

Leave a Reply

Your email address will not be published. Required fields are marked *