Menu Close

if-the-points-C-1-2-divides-internally-the-line-segment-joining-the-points-A-2-5-and-B-x-y-in-the-ratio-3-4-find-the-value-of-x-2-y-2-




Question Number 24181 by gopikrishnan005@gmail.com last updated on 14/Nov/17
if the points C(−1,2) divides internally the line segment joining the points A(2,5) and B(x,y) in the ratio 3:4 find the value of x^2 +y^2
$${if}\:{the}\:{points}\:{C}\left(−\mathrm{1},\mathrm{2}\right)\:{divides}\:{internally}\:{the}\:{line}\:{segment}\:{joining}\:{the}\:{points}\:{A}\left(\mathrm{2},\mathrm{5}\right)\:{and}\:{B}\left({x},{y}\right)\:{in}\:{the}\:{ratio}\:\mathrm{3}:\mathrm{4}\:{find}\:{the}\:{value}\:{of}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$
Answered by mrW1 last updated on 14/Nov/17
((−1−2)/(x−2))=(3/(3+4))=(3/7)  ⇒3(x−2)=7(−1−2)  ⇒x=−5    ((2−5)/(y−5))=(3/(3+4))=(3/7)  ⇒3(y−5)=7(2−5)  ⇒y=−2    ⇒x^2 +y^2 =25+4=29
$$\frac{−\mathrm{1}−\mathrm{2}}{{x}−\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{3}+\mathrm{4}}=\frac{\mathrm{3}}{\mathrm{7}} \\ $$$$\Rightarrow\mathrm{3}\left({x}−\mathrm{2}\right)=\mathrm{7}\left(−\mathrm{1}−\mathrm{2}\right) \\ $$$$\Rightarrow{x}=−\mathrm{5} \\ $$$$ \\ $$$$\frac{\mathrm{2}−\mathrm{5}}{{y}−\mathrm{5}}=\frac{\mathrm{3}}{\mathrm{3}+\mathrm{4}}=\frac{\mathrm{3}}{\mathrm{7}} \\ $$$$\Rightarrow\mathrm{3}\left({y}−\mathrm{5}\right)=\mathrm{7}\left(\mathrm{2}−\mathrm{5}\right) \\ $$$$\Rightarrow{y}=−\mathrm{2} \\ $$$$ \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{25}+\mathrm{4}=\mathrm{29} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *