Question Number 188327 by HeferH last updated on 28/Feb/23
$${if}\:{the}\:{roots}\:{of}\:\:\mathrm{2}{x}^{\mathrm{2}} \:−{xn}\:=\:\mathrm{2}{x}\:+\:{m}\:\:{is}\:\mathrm{5}, \\ $$$$\:{then}\:{find}\::\:\mathrm{4}{n}\:+\:{m}\:−\:\mathrm{5}\: \\ $$$$\: \\ $$
Answered by Rasheed.Sindhi last updated on 28/Feb/23
$$\mathrm{2}{x}^{\mathrm{2}} \:−{xn}\:=\:\mathrm{2}{x}\:+\:{m} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} \:−{xn}\:−\:\mathrm{2}{x}\:−\:{m}=\mathrm{0} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} −\left({n}+\mathrm{2}\right){x}−{m}=\mathrm{0} \\ $$$${Say}\:\alpha\:,\:\beta\:{are}\:{roots} \\ $$$${Given}\:\alpha=\beta=\mathrm{5} \\ $$$$\alpha+\beta=\frac{{n}+\mathrm{2}}{\mathrm{2}}=\mathrm{5}+\mathrm{5}=\mathrm{10}\Rightarrow{n}=\mathrm{18} \\ $$$$\:\alpha\beta=−\frac{{m}}{\mathrm{2}}=\mathrm{5}×\mathrm{5}=\mathrm{25}\Rightarrow{m}=−\mathrm{50} \\ $$$$ \\ $$$$\mathrm{4}{n}\:+\:{m}\:−\:\mathrm{5}=\mathrm{4}\left(\mathrm{18}\right)+\left(−\mathrm{50}\right)−\mathrm{5}=\mathrm{17} \\ $$$$ \\ $$
Commented by HeferH last updated on 28/Feb/23
$${Nice}\:{solution}!\:{I}\:{forgor}\:{about}\:{those}\:{properties} \\ $$$$\:{of}\:{roots} \\ $$
Answered by Rasheed.Sindhi last updated on 28/Feb/23
$${Another}\:{way}… \\ $$$$\:\mathrm{2}{x}^{\mathrm{2}} \:−{xn}\:=\:\mathrm{2}{x}\:+\:{m} \\ $$$$\:\mathrm{2}{x}^{\mathrm{2}} \:−{xn}−\mathrm{2}{x}−\:{m}=\mathrm{0} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} −\left({n}+\mathrm{2}\right){x}−{m}=\mathrm{0}….\left({i}\right) \\ $$$${The}\:{equation}\:{having}\:{roots}\:\mathrm{5}\:,\:\mathrm{5}\:{is} \\ $$$$\:\:\:\:\left({x}−\mathrm{5}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\:\:{x}^{\mathrm{2}} −\mathrm{10}{x}+\mathrm{25}=\mathrm{0}………\left({ii}\right) \\ $$$${Comparing}\:{coefficients}\:{of}\:\left({i}\right)\:\&\:\left({ii}\right) \\ $$$$\frac{\mathrm{2}}{\mathrm{1}}=\frac{−\left({n}+\mathrm{2}\right)}{−\mathrm{10}}=\frac{\:−{m}\:}{\mathrm{25}} \\ $$$${n}+\mathrm{2}=\mathrm{20}\:\wedge\:−{m}=\mathrm{50} \\ $$$$\:\:\:{n}=\mathrm{18}\:\wedge\:{m}=−\mathrm{50} \\ $$$$\blacktriangleright\:\mathrm{4}{n}\:+\:{m}\:−\:\mathrm{5}=\mathrm{4}\left(\mathrm{18}\right)+\left(−\mathrm{50}\right)−\mathrm{5}=\mathrm{17} \\ $$
Answered by Rasheed.Sindhi last updated on 28/Feb/23
$$\mathrm{2}{x}^{\mathrm{2}} −\left({n}+\mathrm{2}\right){x}−{m}=\mathrm{0} \\ $$$$\bullet\:\because\mathrm{5}\:{is}\:{root} \\ $$$$\:\:\:\therefore\mathrm{2}\left(\mathrm{5}\right)^{\mathrm{2}} −\left({n}+\mathrm{2}\right)\left(\mathrm{5}\right)−{m}=\mathrm{0} \\ $$$$\:\:\:\:\mathrm{50}−\mathrm{5}{n}−\mathrm{10}−{m}=\mathrm{0} \\ $$$$\:\:\:\:{m}+\mathrm{5}{n}=\mathrm{40}……….\left({i}\right) \\ $$$$\bullet\frac{{d}}{{dx}}\left(\mathrm{2}{x}^{\mathrm{2}} −\left({n}+\mathrm{2}\right){x}−{m}\right)_{{n}=\mathrm{5}} =\frac{{d}}{{dx}}\left(\mathrm{0}\right)_{{x}=\mathrm{5}} \\ $$$$\left.\:\:\mathrm{4}{x}−\left({n}+\mathrm{2}\right)\right]_{{x}=\mathrm{5}} =\mathrm{0} \\ $$$$\:\:\Rightarrow\mathrm{4}\left(\mathrm{5}\right)−{n}−\mathrm{2}=\mathrm{0} \\ $$$$\:\:\Rightarrow{n}=\mathrm{18} \\ $$$$\:\:\:\left({i}\right)\Rightarrow{m}+\mathrm{5}\left(\mathrm{18}\right)=\mathrm{40}\Rightarrow{m}=−\mathrm{50} \\ $$$$\blacktriangleright\mathrm{4}{n}\:+\:{m}\:−\:\mathrm{5}=\mathrm{4}\left(\mathrm{18}\right)+\left(−\mathrm{50}\right)−\mathrm{5}=\mathrm{17}\: \\ $$