Menu Close

If-the-roots-of-the-equation-24x-4-52x-3-18x-2-13x-6-0-are-and-1-Find-the-value-of-and-




Question Number 119396 by bemath last updated on 24/Oct/20
If the roots of the equation   24x^4 −52x^3 +18x^2 +13x−6=0 are   α , −α , β and (1/β). Find the value of   α and β.
Iftherootsoftheequation24x452x3+18x2+13x6=0areα,α,βand1β.Findthevalueofαandβ.
Commented by Dwaipayan Shikari last updated on 24/Oct/20
24x^4 −52x^3 +18x^2 +13x−6=0  α−α+β+(1/β)=((52)/(24))  24β^2 −52β+24=0⇒6β^2 −13β+6=0  β=((13±(√(169−144)))/(12))=(3/2) or (2/3)  α(−α)β.(1/β)=−(6/(24))  α=±(1/2)
24x452x3+18x2+13x6=0αα+β+1β=522424β252β+24=06β213β+6=0β=13±16914412=32or23α(α)β.1β=624α=±12
Answered by TANMAY PANACEA last updated on 24/Oct/20
α+(−α)+β+(1/β)=((−(−52))/(24))=((13)/6)  6β^2 +6−13β=0  6β^2 −9β−4β+6=0  3β(2β−3)−2(2β−3)=0  (2β−3)(3β−2)=0  β=(2/3)and(3/2)  α×(−α)×β×(1/β)=((−6)/(24))  α^2 =(1/4)→α=±(1/2)
α+(α)+β+1β=(52)24=1366β2+613β=06β29β4β+6=03β(2β3)2(2β3)=0(2β3)(3β2)=0β=23and32α×(α)×β×1β=624α2=14α=±12
Answered by $@y@m last updated on 24/Oct/20
24x^4 −52x^3 +18x^2 +13x−6=0 ≡  24(x^2 −α^2 ){x^2 −(β+(1/β))x+1}  ⇒24α^2 =6⇒α=±(1/2) Ans Part I  Also, 24α^2 (β+(1/β))=13  β+(1/β)=((13)/6)  6β^2 −13β+6=0  β=((13±(√(169−144)))/(12))  β=((13±5)/(12))=((18)/(12)), (8/(12))  β=(3/2)′(2/3) Ans Part II
24x452x3+18x2+13x6=024(x2α2){x2(β+1β)x+1}24α2=6α=±12AnsPartIAlso,24α2(β+1β)=13β+1β=1366β213β+6=0β=13±16914412β=13±512=1812,812β=3223AnsPartII
Answered by 1549442205PVT last updated on 24/Oct/20
24x^4 −52x^3 +18x^2 +13x−6  =24(x+α)(x−α)(x−β)(x−(1/β))  =24(x^2 −α^2 )[x^2 −(β+(1/β))x+1]  =24{x^4 −[α^2 (β+(1/β))+β+(1/β)]x^3   +(1−α^2 )x^2 +α^2 (β+(1/β))x−α^2 }  ⇔ { ((−24α^2 (β+(1/β))=−52(1))),((24(1−α^2 )=18(2))),((24α^2 (β+(1/β))=13(3))),((−24α^2 =−6(4))) :}  (1)⇒α^2 =1/4⇒α=±1/2.Replace (1)  (3)we get β+(1/β)=((13)/6)⇔6β^2 −13β+6=0  Δ=13^2 −144=25⇒β=((13±5)/(12))∈{(3/2),(2/3)}  Thus,α=±(1/2),β∈{(3/2),(2/3)}
24x452x3+18x2+13x6=24(x+α)(xα)(xβ)(x1β)=24(x2α2)[x2(β+1β)x+1]=24{x4[α2(β+1β)+β+1β]x3+(1α2)x2+α2(β+1β)xα2}{24α2(β+1β)=52(1)24(1α2)=18(2)24α2(β+1β)=13(3)24α2=6(4)(1)α2=1/4α=±1/2.Replace(1)(3)wegetβ+1β=1366β213β+6=0Δ=132144=25β=13±512{32,23}Thus,α=±12,β{32,23}

Leave a Reply

Your email address will not be published. Required fields are marked *