Menu Close

if-the-roots-of-the-equation-ax-2-bx-c-0-are-in-the-ratio-3-4-then-show-that-12b-2-49ac-




Question Number 160564 by Avijit007 last updated on 02/Dec/21
if the roots of the equation ax^2 +bx+c=0  are in the ratio 3:4,then show that   12b^2 =49ac.
iftherootsoftheequationax2+bx+c=0areintheratio3:4,thenshowthat12b2=49ac.
Commented by otchereabdullai@gmail.com last updated on 02/Dec/21
nice!
nice!
Commented by cortano last updated on 02/Dec/21
 ax^2 +bx+c=0 { (x_1 ),(x_2 ) :} →(x_1 /x_2 ) = (3/4)    { ((x_1 =3k)),((x_2 =4k)) :} → { ((x_1 +x_2 =−(b/a)⇒k=−(b/(7a)))),((x_1 .x_2 =(c/a)⇒c=12ak^2 )) :}  ⇒c=12a(−(b/(7a)))^2   ⇒49a^2 c=12ab ⇒49ac=12b
ax2+bx+c=0{x1x2x1x2=34{x1=3kx2=4k{x1+x2=bak=b7ax1.x2=cac=12ak2c=12a(b7a)249a2c=12ab49ac=12b
Answered by Rasheed.Sindhi last updated on 02/Dec/21
((−b+(√(b^2 −4ac)) )/(2a)):((−b−(√(b^2 −4ac)) )/(2a))=4:3  3(((−b+(√(b^2 −4ac)) )/(2a)))=4(((−b−(√(b^2 −4ac)) )/(2a)))  4(((−b−(√(b^2 −4ac)) )/(2a)))−3(((−b+(√(b^2 −4ac)) )/(2a)))=0  −4b−4(√(b^2 −4ac)) +3b−3(√(b^2 −4ac))  −b=7(√(b^2 −4ac))   b^2 =49b^2 −196ac  48b^2 =196ac  12b^2 =49ac
b+b24ac2a:bb24ac2a=4:33(b+b24ac2a)=4(bb24ac2a)4(bb24ac2a)3(b+b24ac2a)=04b4b24ac+3b3b24acb=7b24acb2=49b2196ac48b2=196ac12b2=49ac
Commented by Rasheed.Sindhi last updated on 02/Dec/21
((−b+(√(b^2 −4ac)) )/(2a)):((−b−(√(b^2 −4ac)) )/(2a))=3:4  4(((−b+(√(b^2 −4ac)) )/(2a)))=3(((−b−(√(b^2 −4ac)) )/(2a)))  −4b+4(√(b^2 −4ac)) =−3b−3(√(b^2 −4ac))  b=7(√(b^2 −4ac))  b^2 =49(b^2 −4ac)=49b^2 −196ac  48b^2 =196ac  12b^2 =49ac
b+b24ac2a:bb24ac2a=3:44(b+b24ac2a)=3(bb24ac2a)4b+4b24ac=3b3b24acb=7b24acb2=49(b24ac)=49b2196ac48b2=196ac12b2=49ac
Answered by Rasheed.Sindhi last updated on 02/Dec/21
Let the roots are 3α & 4α  3α+4α=−(b/a) ∧ 3α.4α=(c/a)  7α=−(b/a) ∧ 12α^2 =(c/a)  ⇒12(−(b/(7a)))^2 =(c/a)⇒((12b^2 )/(49a^2 ))=(c/a)  ⇒12b^2 =49ac
Lettherootsare3α&4α3α+4α=ba3α.4α=ca7α=ba12α2=ca12(b7a)2=ca12b249a2=ca12b2=49ac
Commented by Avijit007 last updated on 02/Dec/21
thanks.
thanks.
Answered by Rasheed.Sindhi last updated on 02/Dec/21
Roots: 3k,4k    { ((a(3k)^2 +b(3k)+c=0)),((a(4k)^2 +b(4k)+c=0)) :}     { ((9ak^2 +3bk+c=0.......(i))),((16ak^2 +4bk+c=0.......(ii))) :}   (ii)−(i):7ak^2 +bk=0          k(7ak+b)=0          7ak+b=0            k=−(b/(7a))     ;k≠0  Update Roots:3(−(b/(7a)))  &  4(−(b/(7a)))  Product of roots:          12(−(b/(7a)))^2 =(c/a)          12b^2 =49ac
Roots:3k,4k{a(3k)2+b(3k)+c=0a(4k)2+b(4k)+c=0{9ak2+3bk+c=0.(i)16ak2+4bk+c=0.(ii)(ii)(i):7ak2+bk=0k(7ak+b)=07ak+b=0k=b7a;k0UpdateRoots:3(b7a)&4(b7a)Productofroots:12(b7a)2=ca12b2=49ac

Leave a Reply

Your email address will not be published. Required fields are marked *