Menu Close

If-the-roots-of-the-equation-x-2-x-1-0-are-and-provided-that-x-n-n-n-Find-x-16-




Question Number 107812 by I want to learn more last updated on 12/Aug/20
If the roots of the equation   x^2   −  x  −  1   =  0   are   α  and  β,  provided that      x_n   =  α^n   +  β^n   .   Find    x_(16) .
Iftherootsoftheequationx2x1=0areαandβ,providedthatxn=αn+βn.Findx16.
Answered by mr W last updated on 12/Aug/20
α+β=1  αβ=−1  α^2 +β^2 =(α+β)^2 −2αβ=1−2(−1)=3  α^4 +β^4 =(α^2 +β^2 )^2 −2(αβ)^2 =3^2 −2=7  α^8 +β^8 =(α^4 +β^4 )^2 −2(αβ)^4 =7^2 −2=47  α^(16) +β^(16) =(α^8 +β^8 )^2 −2(αβ)^8 =47^2 −2=2207
α+β=1αβ=1α2+β2=(α+β)22αβ=12(1)=3α4+β4=(α2+β2)22(αβ)2=322=7α8+β8=(α4+β4)22(αβ)4=722=47α16+β16=(α8+β8)22(αβ)8=4722=2207
Commented by I want to learn more last updated on 12/Aug/20
I really appreciate sir.  Sir is there a way to solve higher power like    x_(91)   ??
Ireallyappreciatesir.Siristhereawaytosolvehigherpowerlikex91??
Commented by mr W last updated on 12/Aug/20
α,β=((1±(√5))/2)  α^n +β^n =(((1+(√5))/2))^n +(((1−(√5))/2))^n
α,β=1±52αn+βn=(1+52)n+(152)n
Commented by I want to learn more last updated on 13/Aug/20
Thanks sir
Thankssir
Answered by hgrocks last updated on 12/Aug/20
   x^(2 )  = x + 1  x^(n+1)  = x^n  + x^(n−1)   α^(n +1)  = α^n  + α^(n−1)        (1)  β^( n+1)  = β^( n)  + β^( n−1)        (2)    (1)+(2)→  x_(n+1)  = x_n  + x_(n−1)   x_0  = 2  x_1  = α + β = 1  x_2  = 2+1 = 3   x_3  = 1+3 = 4  Recursive Sequence :  2,1,3,4,7,11............
x2=x+1xn+1=xn+xn1αn+1=αn+αn1(1)βn+1=βn+βn1(2)(1)+(2)xn+1=xn+xn1x0=2x1=α+β=1x2=2+1=3x3=1+3=4RecursiveSequence:2,1,3,4,7,11
Commented by I want to learn more last updated on 13/Aug/20
Thanks sir.
Thankssir.

Leave a Reply

Your email address will not be published. Required fields are marked *