Menu Close

if-the-sum-of-first-5-terms-of-a-G-P-is-155-sum-of-last-5-terms-is-39680-first-term-is-5-and-last-term-is-20480-find-the-number-of-terms-of-the-sequence-




Question Number 29645 by gyugfeet last updated on 11/Feb/18
if the sum of first 5 terms of  a G.P. is 155, sum of last 5 terms is 39680,first term is 5 and last term  is 20480. find the number of terms of the sequence.
ifthesumoffirst5termsofaG.P.is155,sumoflast5termsis39680,firsttermis5andlasttermis20480.findthenumberoftermsofthesequence.
Answered by Rasheed.Sindhi last updated on 11/Feb/18
Let the common ratio of the GP is r  Sum of first five terms:  5+5r+5r^2 +5r^3 +5r^4 =155   Or  1+r+r^2 +r^3 +r^4 =31...............A  Sum of last five terms(in reverse order):  20480+((20480)/r)+((20480)/r^2 )+((20480)/r^3 )+((20480)/r^4 )=39680  20480(1+(1/r)+(1/r^2 )+(1/r^3 )+(1/r^4 ))=39680  1+(1/r)+(1/r^2 )+(1/r^3 )+(1/r^4 )=((39680)/(20480))  (1/r^4 )(r^4 +r^3 +r^2 +r+1)=((39680)/(20480))  But from A, r^4 +r^3 +r^2 +r+1=31    (1/r^4 )(31)=((39680)/(20480))    r^4 =((20480×31)/(39680))=16  r=±2  Let the number of terms of GP is n  Last term=ar^(n−1)   a=5 (First term) , r=±2 , Last term=39680            5(±2)^(n−1) =20480              (±2)^(n−1) =4096              (±2)^(n−1) =(±2)^(12)                       n−1=12                        n=13  The GP contains 13 terms
LetthecommonratiooftheGPisrSumoffirstfiveterms:5+5r+5r2+5r3+5r4=155Or1+r+r2+r3+r4=31ASumoflastfiveterms(inreverseorder):20480+20480r+20480r2+20480r3+20480r4=3968020480(1+1r+1r2+1r3+1r4)=396801+1r+1r2+1r3+1r4=39680204801r4(r4+r3+r2+r+1)=3968020480ButfromA,r4+r3+r2+r+1=311r4(31)=3968020480r4=20480×3139680=16r=±2LetthenumberoftermsofGPisnLastterm=arn1a=5(Firstterm),r=±2,Lastterm=396805(±2)n1=20480(±2)n1=4096(±2)n1=(±2)12n1=12n=13TheGPcontains13terms

Leave a Reply

Your email address will not be published. Required fields are marked *