Menu Close

If-the-tangents-at-the-end-of-a-focal-chord-of-parabola-meet-the-tangent-at-the-vertex-in-C-D-prove-that-CD-substends-a-right-angle-at-the-focus-




Question Number 118482 by peter frank last updated on 17/Oct/20
If the tangents at the  end of a focal  chord of  parabola meet the  tangent at the  vertex  in C,D.prove that CD  substends a right angle  at the focus
IfthetangentsattheendofafocalchordofparabolameetthetangentatthevertexinC,D.provethatCDsubstendsarightangleatthefocus
Answered by mr W last updated on 18/Oct/20
say vertex is the origin, the facus is  F(0,h), then the eqn. of parabola is  y=(x^2 /(4h))  say the focal chord is  y=h+mx    intersection with parabola:  (x^2 /(4h))=h+mx  x^2 −4mhx−4h^2 =0  ⇒x=2h(m±(√(m^2 +1)))    end point A:  x_A =2h(m−(√(m^2 +1)))  y_A =h+2hm(m−(√(m^2 +1)))  tangent at A:  (dy/dx)=(x/(2h))=m−(√(m^2 +1))  y=h+2hm(m−(√(m^2 +1)))+(m−(√(m^2 +1)))[x−2h(m−(√(m^2 +1)))]  0=h+2hm(m−(√(m^2 +1)))+(m−(√(m^2 +1)))[x−2h(m−(√(m^2 +1)))]  ⇒x=x_C =−(h/(m−(√(m^2 +1))))−2h(√(m^2 +1))    end point B:  x_B =2h(m+(√(m^2 +1)))  y_B =h+2hm(m+(√(m^2 +1)))  tangent at B:  y=h+2hm(m+(√(m^2 +1)))+(m+(√(m^2 +1)))[x−2h(m+(√(m^2 +1)))]  0=h+2hm(m+(√(m^2 +1)))+(m+(√(m^2 +1)))[x−2h(m+(√(m^2 +1)))]  ⇒x=x_D =−(h/(m+(√(m^2 +1))))+2h(√(m^2 +1))    inclination of CF:  m_(CF) =(h/(0−x_C ))=(1/((1/(m−(√(m^2 +1))))+2(√(m^2 +1))))  =((m−(√(m^2 +1)))/(1+2(√(m^2 +1))(m−(√(m^2 +1)))))  =((m−(√(m^2 +1)))/(2m(√(m^2 +1))−2m^2 −1))  inclination of DF:  m_(DF) =(h/(0−x_D ))=(1/((1/(m+(√(m^2 +1))))−2(√(m^2 +1))))  =((m+(√(m^2 +1)))/(1−2(√(m^2 +1))(m+(√(m^2 +1)))))  =−((m+(√(m^2 +1)))/(2m(√(m^2 +1))+2m^2 +1))    m_(CF) ×m_(DF) =−((m−(√(m^2 +1)))/(2m(√(m^2 +1))−2m^2 −1))×((m+(√(m^2 +1)))/(2m(√(m^2 +1))+2m^2 +1))  =−((m^2 −(m^2 +1))/((2m(√(m^2 +1)))^2 −(2m^2 +1)^2 ))  =−((−1)/(4m^4 +4m^2 −4m^4 −4m^2 −1))  =−1  ⇒CF⊥DF
sayvertexistheorigin,thefacusisF(0,h),thentheeqn.ofparabolaisy=x24hsaythefocalchordisy=h+mxintersectionwithparabola:x24h=h+mxx24mhx4h2=0x=2h(m±m2+1)endpointA:xA=2h(mm2+1)yA=h+2hm(mm2+1)tangentatA:dydx=x2h=mm2+1y=h+2hm(mm2+1)+(mm2+1)[x2h(mm2+1)]0=h+2hm(mm2+1)+(mm2+1)[x2h(mm2+1)]x=xC=hmm2+12hm2+1endpointB:xB=2h(m+m2+1)yB=h+2hm(m+m2+1)tangentatB:y=h+2hm(m+m2+1)+(m+m2+1)[x2h(m+m2+1)]0=h+2hm(m+m2+1)+(m+m2+1)[x2h(m+m2+1)]x=xD=hm+m2+1+2hm2+1inclinationofCF:mCF=h0xC=11mm2+1+2m2+1=mm2+11+2m2+1(mm2+1)=mm2+12mm2+12m21inclinationofDF:mDF=h0xD=11m+m2+12m2+1=m+m2+112m2+1(m+m2+1)=m+m2+12mm2+1+2m2+1mCF×mDF=mm2+12mm2+12m21×m+m2+12mm2+1+2m2+1=m2(m2+1)(2mm2+1)2(2m2+1)2=14m4+4m24m44m21=1CFDF
Commented by peter frank last updated on 18/Oct/20
diagram please
diagramplease
Commented by peter frank last updated on 18/Oct/20
thank you.i appriaciate  your time.
thankyou.iappriaciateyourtime.
Commented by mr W last updated on 18/Oct/20
Commented by peter frank last updated on 18/Oct/20
GODBLESS YOU
GODBLESSYOU
Commented by peter frank last updated on 18/Oct/20
where this came from  y=h+2hm(m−(√(m^2 +1)))+(m−(√(m^2 +1)))[x−2h(m−(√(m^2 +1)))]
wherethiscamefromy=h+2hm(mm2+1)+(mm2+1)[x2h(mm2+1)]
Commented by mr W last updated on 18/Oct/20
point C(x_C ,y_C )  x_C =2h(m−(√(m^2 +1)))  y_C =h+mx_C =h+2hm(m−(√(m^2 +1)))  the inclination of tangent at C is  m_C =m−(√(m^2 +1))  ⇒the eqn. of tangent at C is  y=y_C +m_C (x−x_C )  ⇒y=h+2hm(m−(√(m^2 +1)))+(m−(√(m^2 +1)))[x−2h(m−(√(m^2 +1)))]
pointC(xC,yC)xC=2h(mm2+1)yC=h+mxC=h+2hm(mm2+1)theinclinationoftangentatCismC=mm2+1theeqn.oftangentatCisy=yC+mC(xxC)y=h+2hm(mm2+1)+(mm2+1)[x2h(mm2+1)]

Leave a Reply

Your email address will not be published. Required fields are marked *