Question Number 118482 by peter frank last updated on 17/Oct/20

Answered by mr W last updated on 18/Oct/20
![say vertex is the origin, the facus is F(0,h), then the eqn. of parabola is y=(x^2 /(4h)) say the focal chord is y=h+mx intersection with parabola: (x^2 /(4h))=h+mx x^2 −4mhx−4h^2 =0 ⇒x=2h(m±(√(m^2 +1))) end point A: x_A =2h(m−(√(m^2 +1))) y_A =h+2hm(m−(√(m^2 +1))) tangent at A: (dy/dx)=(x/(2h))=m−(√(m^2 +1)) y=h+2hm(m−(√(m^2 +1)))+(m−(√(m^2 +1)))[x−2h(m−(√(m^2 +1)))] 0=h+2hm(m−(√(m^2 +1)))+(m−(√(m^2 +1)))[x−2h(m−(√(m^2 +1)))] ⇒x=x_C =−(h/(m−(√(m^2 +1))))−2h(√(m^2 +1)) end point B: x_B =2h(m+(√(m^2 +1))) y_B =h+2hm(m+(√(m^2 +1))) tangent at B: y=h+2hm(m+(√(m^2 +1)))+(m+(√(m^2 +1)))[x−2h(m+(√(m^2 +1)))] 0=h+2hm(m+(√(m^2 +1)))+(m+(√(m^2 +1)))[x−2h(m+(√(m^2 +1)))] ⇒x=x_D =−(h/(m+(√(m^2 +1))))+2h(√(m^2 +1)) inclination of CF: m_(CF) =(h/(0−x_C ))=(1/((1/(m−(√(m^2 +1))))+2(√(m^2 +1)))) =((m−(√(m^2 +1)))/(1+2(√(m^2 +1))(m−(√(m^2 +1))))) =((m−(√(m^2 +1)))/(2m(√(m^2 +1))−2m^2 −1)) inclination of DF: m_(DF) =(h/(0−x_D ))=(1/((1/(m+(√(m^2 +1))))−2(√(m^2 +1)))) =((m+(√(m^2 +1)))/(1−2(√(m^2 +1))(m+(√(m^2 +1))))) =−((m+(√(m^2 +1)))/(2m(√(m^2 +1))+2m^2 +1)) m_(CF) ×m_(DF) =−((m−(√(m^2 +1)))/(2m(√(m^2 +1))−2m^2 −1))×((m+(√(m^2 +1)))/(2m(√(m^2 +1))+2m^2 +1)) =−((m^2 −(m^2 +1))/((2m(√(m^2 +1)))^2 −(2m^2 +1)^2 )) =−((−1)/(4m^4 +4m^2 −4m^4 −4m^2 −1)) =−1 ⇒CF⊥DF](https://www.tinkutara.com/question/Q118512.png)
Commented by peter frank last updated on 18/Oct/20

Commented by peter frank last updated on 18/Oct/20

Commented by mr W last updated on 18/Oct/20

Commented by peter frank last updated on 18/Oct/20

Commented by peter frank last updated on 18/Oct/20
![where this came from y=h+2hm(m−(√(m^2 +1)))+(m−(√(m^2 +1)))[x−2h(m−(√(m^2 +1)))]](https://www.tinkutara.com/question/Q118596.png)
Commented by mr W last updated on 18/Oct/20
![point C(x_C ,y_C ) x_C =2h(m−(√(m^2 +1))) y_C =h+mx_C =h+2hm(m−(√(m^2 +1))) the inclination of tangent at C is m_C =m−(√(m^2 +1)) ⇒the eqn. of tangent at C is y=y_C +m_C (x−x_C ) ⇒y=h+2hm(m−(√(m^2 +1)))+(m−(√(m^2 +1)))[x−2h(m−(√(m^2 +1)))]](https://www.tinkutara.com/question/Q118622.png)