Menu Close

If-the-value-of-y-satisfying-the-equations-xsin-3-y-3xsin-y-cos-2-y-63-and-xcos-3-y-3xcosy-sin-2-y-62-simultaneously-Then-tan-y-is-equal-to-




Question Number 26981 by Tinkutara last updated on 31/Dec/17
If the value of y satisfying the equations  xsin^3 y + 3xsin y cos^2 y = 63 and xcos^3 y  + 3xcosy sin^2 y = 62 simultaneously.  Then tan y is equal to
$$\mathrm{If}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{y}\:\mathrm{satisfying}\:\mathrm{the}\:\mathrm{equations} \\ $$$${x}\mathrm{sin}^{\mathrm{3}} {y}\:+\:\mathrm{3}{x}\mathrm{sin}\:{y}\:\mathrm{cos}^{\mathrm{2}} {y}\:=\:\mathrm{63}\:\mathrm{and}\:{x}\mathrm{cos}^{\mathrm{3}} {y} \\ $$$$+\:\mathrm{3}{x}\mathrm{cos}{y}\:\mathrm{sin}^{\mathrm{2}} {y}\:=\:\mathrm{62}\:\mathrm{simultaneously}. \\ $$$$\mathrm{Then}\:\mathrm{tan}\:{y}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$
Answered by ajfour last updated on 31/Dec/17
Adding the eq.s  x(sin y+cos y)^3 =125     ...(i)  sibtracting:  x(sin y−cos y)^3 =1         ...(ii)  dividing (i) by (ii)  ((tan y+1)/(tan y−1))=5   ⇒  tan y=(3/2) .
$${Adding}\:{the}\:{eq}.{s} \\ $$$${x}\left(\mathrm{sin}\:{y}+\mathrm{cos}\:{y}\right)^{\mathrm{3}} =\mathrm{125}\:\:\:\:\:…\left({i}\right) \\ $$$${sibtracting}: \\ $$$${x}\left(\mathrm{sin}\:{y}−\mathrm{cos}\:{y}\right)^{\mathrm{3}} =\mathrm{1}\:\:\:\:\:\:\:\:\:…\left({ii}\right) \\ $$$${dividing}\:\left({i}\right)\:{by}\:\left({ii}\right) \\ $$$$\frac{\mathrm{tan}\:{y}+\mathrm{1}}{\mathrm{tan}\:{y}−\mathrm{1}}=\mathrm{5}\:\:\:\Rightarrow\:\:\mathrm{tan}\:{y}=\frac{\mathrm{3}}{\mathrm{2}}\:. \\ $$$$ \\ $$
Commented by Tinkutara last updated on 01/Jan/18
Thank you very much Sir! I got the answer.

Leave a Reply

Your email address will not be published. Required fields are marked *