Menu Close

If-three-positive-numbers-a-b-c-are-in-A-P-and-1-a-2-1-b-2-1-c-2-also-in-A-P-then-1-a-b-c-2-2b-3a-c-3-b-2-ac-8-4-2c-2b-a-




Question Number 24858 by Tinkutara last updated on 27/Nov/17
If three positive numbers a, b, c are in  A.P. and (1/a^2 ), (1/b^2 ), (1/c^2 ) also in A.P., then  (1) a = b = c  (2) 2b = 3a + c  (3) b^2  = ((ac)/8)  (4) 2c = 2b + a
Ifthreepositivenumbersa,b,careinA.P.and1a2,1b2,1c2alsoinA.P.,then(1)a=b=c(2)2b=3a+c(3)b2=ac8(4)2c=2b+a
Answered by ajfour last updated on 28/Nov/17
let a=b−d  and   c=b+d  (2/b^2 )=((a^2 +c^2 )/(a^2 c^2 )) =((2(b^2 +d^2 ))/((b^2 −d^2 )^2 ))  let d=kb  ⇒   (1/b^2 )=(((1+k^2 )b^2 )/((1−k^2 )^2 b^4 ))  or    (1−k^2 )^2 =1+k^2   let 1−k^2 =t  ⇒     t^2 =2−t  ⇒   (t+(1/2))^2 =(9/4)  or   t=1  ⇒   1−k^2 =1   ⇒  k=0  so       a=b=c .
leta=bdandc=b+d2b2=a2+c2a2c2=2(b2+d2)(b2d2)2letd=kb1b2=(1+k2)b2(1k2)2b4or(1k2)2=1+k2let1k2=tt2=2t(t+12)2=94ort=11k2=1k=0soa=b=c.
Commented by prakash jain last updated on 30/Nov/17
t=−2  k=(√3)  b=b  a=b(1−(√3))  c=b(1+(√3))  That is the solution provided  by jota+.
t=2k=3b=ba=b(13)c=b(1+3)Thatisthesolutionprovidedbyjota+.
Commented by Tinkutara last updated on 28/Nov/17
Thank you Sir!
ThankyouSir!
Commented by prakash jain last updated on 30/Nov/17
What about the solution posted  below by jota+. I have put  my calculation as a comment there.
Whataboutthesolutionpostedbelowbyjota+.Ihaveputmycalculationasacommentthere.
Answered by jota+ last updated on 29/Nov/17
one solution  a=1−(√3)   b=1   c=1+(√3)
onesolutiona=13b=1c=1+3
Commented by prakash jain last updated on 30/Nov/17
ok.
ok.
Commented by prakash jain last updated on 30/Nov/17
(1/a^2 )=(1/(4−2(√3)))=(1/(2(2−(√3))))  =((2+(√3))/2)=1+((√3)/2)  (1/b^2 )=1  (1/c^2 )=(1/(4+2(√3)))=(1/(2(2+(√3))))=1−((√3)/2)
1a2=1423=12(23)=2+32=1+321b2=11c2=14+23=12(2+3)=132
Commented by Tinkutara last updated on 30/Nov/17
But my ques. says a,b,c to be +ve.
Butmyques.saysa,b,ctobe+ve.

Leave a Reply

Your email address will not be published. Required fields are marked *