Menu Close

if-U-0-0-U-n-1-2n-2-U-n-2n-1-find-U-n-




Question Number 168585 by mkam last updated on 13/Apr/22
if: U_0 =0 , U_(n+1)  = (2n+2)U_n +2n+1 find U_(n )  ?
$${if}:\:{U}_{\mathrm{0}} =\mathrm{0}\:,\:{U}_{{n}+\mathrm{1}} \:=\:\left(\mathrm{2}{n}+\mathrm{2}\right){U}_{{n}} +\mathrm{2}{n}+\mathrm{1}\:{find}\:{U}_{{n}\:} \:? \\ $$
Commented by mr W last updated on 13/Apr/22
U_n =2^n n!−1
$${U}_{{n}} =\mathrm{2}^{{n}} {n}!−\mathrm{1} \\ $$
Commented by mkam last updated on 13/Apr/22
can you give me step by step sir
$${can}\:{you}\:{give}\:{me}\:{step}\:{by}\:{step}\:{sir} \\ $$
Answered by mr W last updated on 13/Apr/22
U_(n+1) +1=(2n+2)U_n +2n+2  U_(n+1) +1=2(n+1)(U_n +1)  ((U_(n+1) +1)/(U_n +1))=2(n+1)  ((U_n +1)/(U_(n−1) +1))=2n  ((U_(n−1) +1)/(U_(n−2) +1))=2(n−1)  ......  ((U_2 +1)/(U_1 +1))=2×2  ((U_1 +1)/(U_0 +1))=2×1  ⇒((U_n +1)/(U_(n−1) +1))×((U_(n−1) +1)/(U_(n−2) +1))×...×((U_1 +1)/(U_0 +1))=2^n n×(n−1)×...2×1  ⇒((U_n +1)/(U_0 +1))=2^n n!  U_n =(U_0 +1)2^n n!−1  ⇒U_n =2^n n!−1
$${U}_{{n}+\mathrm{1}} +\mathrm{1}=\left(\mathrm{2}{n}+\mathrm{2}\right){U}_{{n}} +\mathrm{2}{n}+\mathrm{2} \\ $$$${U}_{{n}+\mathrm{1}} +\mathrm{1}=\mathrm{2}\left({n}+\mathrm{1}\right)\left({U}_{{n}} +\mathrm{1}\right) \\ $$$$\frac{{U}_{{n}+\mathrm{1}} +\mathrm{1}}{{U}_{{n}} +\mathrm{1}}=\mathrm{2}\left({n}+\mathrm{1}\right) \\ $$$$\frac{{U}_{{n}} +\mathrm{1}}{{U}_{{n}−\mathrm{1}} +\mathrm{1}}=\mathrm{2}{n} \\ $$$$\frac{{U}_{{n}−\mathrm{1}} +\mathrm{1}}{{U}_{{n}−\mathrm{2}} +\mathrm{1}}=\mathrm{2}\left({n}−\mathrm{1}\right) \\ $$$$…… \\ $$$$\frac{{U}_{\mathrm{2}} +\mathrm{1}}{{U}_{\mathrm{1}} +\mathrm{1}}=\mathrm{2}×\mathrm{2} \\ $$$$\frac{{U}_{\mathrm{1}} +\mathrm{1}}{{U}_{\mathrm{0}} +\mathrm{1}}=\mathrm{2}×\mathrm{1} \\ $$$$\Rightarrow\frac{{U}_{{n}} +\mathrm{1}}{{U}_{{n}−\mathrm{1}} +\mathrm{1}}×\frac{{U}_{{n}−\mathrm{1}} +\mathrm{1}}{{U}_{{n}−\mathrm{2}} +\mathrm{1}}×…×\frac{{U}_{\mathrm{1}} +\mathrm{1}}{{U}_{\mathrm{0}} +\mathrm{1}}=\mathrm{2}^{{n}} {n}×\left({n}−\mathrm{1}\right)×…\mathrm{2}×\mathrm{1} \\ $$$$\Rightarrow\frac{{U}_{{n}} +\mathrm{1}}{{U}_{\mathrm{0}} +\mathrm{1}}=\mathrm{2}^{{n}} {n}! \\ $$$${U}_{{n}} =\left({U}_{\mathrm{0}} +\mathrm{1}\right)\mathrm{2}^{{n}} {n}!−\mathrm{1} \\ $$$$\Rightarrow{U}_{{n}} =\mathrm{2}^{{n}} {n}!−\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *