Menu Close

If-u-1-u-2-u-3-u-n-2n-2-n-is-a-AP-find-the-value-of-u-1-u-2-u-3-u-2n-2-u-2n-1-




Question Number 83406 by jagoll last updated on 02/Mar/20
If u_1 +u_2 +u_3 +...+u_n  = 2n^2 +n   is a  AP. find the value of   u_1 +u_2 +u_3 +...+u_(2n−2) +u_(2n−1)  .
Ifu1+u2+u3++un=2n2+nisaAP.findthevalueofu1+u2+u3++u2n2+u2n1.
Commented by jagoll last updated on 03/Mar/20
my way   from s_n  = 2n^2 +n  { ((u_1 =3)),((u_n  = 4n−1)) :}  u_1 +u_2 +u_3 +...+u_(2n−2) +u_(2n−1)  = M  let 2n−1 = k   M = (k/2)(3+u_k )=(k/2)(3+4k−1)  M = (k/2)(4k+2) = k (2k+1)  M = (2n−1)(4k−1) = 8n^2 −6n+1
mywayfromsn=2n2+n{u1=3un=4n1u1+u2+u3++u2n2+u2n1=Mlet2n1=kM=k2(3+uk)=k2(3+4k1)M=k2(4k+2)=k(2k+1)M=(2n1)(4k1)=8n26n+1
Commented by mathmax by abdo last updated on 02/Mar/20
we have u_1 +u_2 +....+u_n =2n^2  +n  u_1 +u_2 +....+u_n +u_(n+1) =2(n+1)^2  +n+1 ⇒  u_(n+1) =2(n+1)^2  +n+1−2n^2 −n =2(n^2  +2n+1)−2n^2 +1  =2n^2 +4n+2−2n^2  +1 =4n+3 ⇒u_n =4(n−1)+3 =4n−1 ⇒  u_1 +u_2 +....+u_(2n−1) =((2n−1−1+1)/2)(u_1 +u_(2n−1) )  =((2n−1)/2){3 +4(2n−1)−1} =((2n−1)/2)(2+8n−4)  =(2n−1)(4n−1)=8n^2 −2n−4n+1 =8n^2 −6n +1
wehaveu1+u2+.+un=2n2+nu1+u2+.+un+un+1=2(n+1)2+n+1un+1=2(n+1)2+n+12n2n=2(n2+2n+1)2n2+1=2n2+4n+22n2+1=4n+3un=4(n1)+3=4n1u1+u2+.+u2n1=2n11+12(u1+u2n1)=2n12{3+4(2n1)1}=2n12(2+8n4)=(2n1)(4n1)=8n22n4n+1=8n26n+1
Commented by mathmax by abdo last updated on 02/Mar/20
u_n =4n−1
un=4n1
Answered by mind is power last updated on 02/Mar/20
ΣU_k =(((u_1 +u_n )n)/2)  u_n =U_1 +(n−1)r  ⇒(((2u_1 +(n−1)r)n)/2)=2n^2 +n  ⇒2u_1 +(n−1)r=4n+2  2u_1 −r+nr=4n+2  ⇒r=4,u_1 =3  Σ_(k=1) ^(2n−1) u_k =((2n−1)/2)(u_1 +u_(2n−1) )  =((2n−1)/2)(u_1 +u_1 +(2n−2)r)  =((2n−1)/2)(6+(2n−2)4)=  =(2n−1)(−1+4n)=8n^2 −6n+1
ΣUk=(u1+un)n2un=U1+(n1)r(2u1+(n1)r)n2=2n2+n2u1+(n1)r=4n+22u1r+nr=4n+2r=4,u1=32n1k=1uk=2n12(u1+u2n1)=2n12(u1+u1+(2n2)r)=2n12(6+(2n2)4)==(2n1)(1+4n)=8n26n+1
Commented by mind is power last updated on 02/Mar/20
2n−1=11 sir
2n1=11sir
Commented by jagoll last updated on 02/Mar/20
if n = 6⇒ 8(36)−36+1= 7×36+1=253  u_1 +u_2 +u_3 +...+u_(10 ) = 5(3+39) = 5×42 =210  not same sir
ifn=68(36)36+1=7×36+1=253u1+u2+u3++u10=5(3+39)=5×42=210notsamesir
Answered by mr W last updated on 02/Mar/20
S_n =2n^2 +n=n(2n+1)  S_(2n−1) =(2n−1)(2(2n−1)+1)=(2n−1)(4n−1)
Sn=2n2+n=n(2n+1)S2n1=(2n1)(2(2n1)+1)=(2n1)(4n1)
Commented by mr W last updated on 02/Mar/20
if we want to know u_n , then  u_n =S_n −S_(n−1) =2n^2 +n−2(n−1)^2 −(n−1)  =4n−1
ifwewanttoknowun,thenun=SnSn1=2n2+n2(n1)2(n1)=4n1
Answered by TANMAY PANACEA last updated on 02/Mar/20
put n=1  u_1 =3  put n=2    u_1 +u_2 =10  so u_2 =7  n=3  u_1 +u_2 +u_3 =21   so u_3 =11  so first term ofA.P=3  common difference=4  S_(2n−1) =((2n−1)/2)[2×3+(2n−1−1)×4]  =((2n−1)/2)×[6+8n−8]  =(2n−1)(4n−1)
putn=1u1=3putn=2u1+u2=10sou2=7n=3u1+u2+u3=21sou3=11sofirsttermofA.P=3commondifference=4S2n1=2n12[2×3+(2n11)×4]=2n12×[6+8n8]=(2n1)(4n1)

Leave a Reply

Your email address will not be published. Required fields are marked *