Menu Close

If-u-and-v-are-vectors-in-R-3-then-prove-that-u-v-1-4-u-v-2-1-4-u-v-2-




Question Number 185695 by Spillover last updated on 25/Jan/23
If u^→  and v^→  are vectors in R^3   then prove that   u^→ .v^→ =(1/4)∥u^→ +v^→ ∥^2 −(1/4)∥u^→ −v^→ ∥^2
IfuandvarevectorsinR3thenprovethatu.v=14u+v214uv2
Answered by mahdipoor last updated on 26/Jan/23
u=(a,b,c)       v=(x,y,z)  (1/4)∣∣u+v∣∣^2 −(1/4)∣∣u−v∣∣^2 =  (1/4)[(a+x)^2 +(b+y)^2 +(c+z)^2 ]−  (1/4)[(a−x)^2 +(b−y)^2 +(c−z)^2 ]=  (1/4)[4ax+4by+4cz]=ax+by+cz=u.v
u=(a,b,c)v=(x,y,z)14∣∣u+v214∣∣uv2=14[(a+x)2+(b+y)2+(c+z)2]14[(ax)2+(by)2+(cz)2]=14[4ax+4by+4cz]=ax+by+cz=u.v
Answered by cortano1 last updated on 26/Jan/23
∣∣u^→  + v^→  ∣∣^2 = ∣∣u^→ ∣∣^2 +∣∣v^→ ∣∣^2 +2u^→ .v^→   ∣∣u^→ −v^→ ∣∣^2 = ∣∣u^→ ∣∣^2 +∣∣v^⌣ ∣∣^2 −2u^→ .v^→   ∣u^→ +v^→ ∣^2 −∣u^→ −v^→ ∣^2 =4u^→ .v^→
∣∣u+v2=∣∣u2+∣∣v2+2u.v∣∣uv2=∣∣u2+∣∣v22u.vu+v2uv2=4u.v

Leave a Reply

Your email address will not be published. Required fields are marked *