Menu Close

if-u-e-xyz-then-u-xyx-a-u-xyz-2-3xyz-1-b-u-3-xyz-2-1-c-u-xyz-2-2yz-1-please-help-




Question Number 53378 by Necxx last updated on 21/Jan/19
if u=e^(xyz)  then u_(xyx) =?  a)u((xyz)^2 +3xyz+1) b)u(3(xyz)^2 +1)  c)u((xyz)^2 +2yz+1)    please help
ifu=exyzthenuxyx=?a)u((xyz)2+3xyz+1)b)u(3(xyz)2+1)c)u((xyz)2+2yz+1)pleasehelp
Answered by tanmay.chaudhury50@gmail.com last updated on 21/Jan/19
u=e^(xyz)   u_x =e^(xyz) ×(∂/∂x)(xyz)=yze^(xyx)   u_(xy) =(∂/∂y)(yze^(xyz) )=e^(xyz) ×z(∂/∂y)(y)+yz×(∂/∂y)(e^(xyz) )                                   =ze^(xyz) +yz×e^(xyz) ×xz                                   =e^(xyz) (z+xyz^2 )           u_(xyz) =e^(xyz) ×(∂/∂z)(z+xyz^2 )+(z+xyz^2 )×(∂/∂z)(e^(xyz) )     =e^(xyz) ×(1+2xyz)+(z+xyz^2 )×e^(xyz) (xy)  =u[1+2xyz+xyz+x^2 y^2 z^2 ]  =u[1+3xyz+x^2 y^2 z^2 ]  so option a is correct
u=exyzux=exyz×x(xyz)=yzexyxuxy=y(yzexyz)=exyz×zy(y)+yz×y(exyz)=zexyz+yz×exyz×xz=exyz(z+xyz2)uxyz=exyz×z(z+xyz2)+(z+xyz2)×z(exyz)=exyz×(1+2xyz)+(z+xyz2)×exyz(xy)=u[1+2xyz+xyz+x2y2z2]=u[1+3xyz+x2y2z2]sooptionaiscorrect
Commented by Necxx last updated on 21/Jan/19
exactly..... Thanks so much
exactly..Thankssomuch

Leave a Reply

Your email address will not be published. Required fields are marked *