Menu Close

If-vector-a-b-c-0-a-7-b-3-and-c-5-find-the-angle-vector-a-and-c-




Question Number 117543 by bemath last updated on 12/Oct/20
If vector a^→ +b^→ +c^→ =0  ∣a^→ ∣=7, ∣b^→ ∣=3 and ∣c^→ ∣=5  find the angle vector a^→  and c^→  ?
Ifvectora+b+c=0a∣=7,b∣=3andc∣=5findtheanglevectoraandc?
Answered by bobhans last updated on 12/Oct/20
let α=∡(a^→ ,c^→ )  by Cosine of law  ⇒cos (π−α) = ((7^2 +5^2 −3^2 )/(2.7.5))  ⇒−cos α= ((65)/(70)) ; cos α = −((13)/(14))  ⇒α = cos^(−1) (−((13)/(14))) = 158.21°
letα=(a,c)byCosineoflawcos(πα)=72+52322.7.5cosα=6570;cosα=1314α=cos1(1314)=158.21°
Answered by AbduraufKodiriy last updated on 12/Oct/20
a^→ +c^→ =−b^→  ⇒ ∣a^→ +c^→ ∣=∣b^→ ∣ ⇒   ⇒ (√(∣a^→ ∣^2 +2∙a^→ ∙c^→ +∣c^→ ∣^2 ))=3  (√(7^2 +2∙∣a^→ ∣∣b^→ ∣cos(𝛟)+5^2 ))=3  74+2∙7∙5cos(𝛟)=9 ⇒ 70cos(𝛟)=−65 ⇒  ⇒ cos(𝛟)=−((13)/(14)) ⇒ 𝛟=π−arccos(((13)/(14)))  𝛟 is angle vector a^→  and c^→
a+c=ba+c∣=∣ba2+2ac+c2=372+2a∣∣bcos(φ)+52=374+275cos(φ)=970cos(φ)=65cos(φ)=1314φ=πarccos(1314)φisanglevectoraandc

Leave a Reply

Your email address will not be published. Required fields are marked *