Question Number 164121 by mkam last updated on 14/Jan/22
$${if}\:{w}\:=\:{f}\left({x},{y}\right)\:{and}\:{x}\:=\:{r}\:{cos}\theta\:,\:{y}\:=\:{rsin}\theta \\ $$$$ \\ $$$${then}\:{prove}\:{that}\:{w}_{{rr}} \:+\:{w}_{\theta\theta} \:=\:\mathrm{0}? \\ $$
Commented by mkam last updated on 14/Jan/22
$$???? \\ $$
Commented by mkam last updated on 15/Jan/22
$$??? \\ $$
Commented by mr W last updated on 15/Jan/22
$${you}\:{cant}\:{prove}! \\ $$$${it}'{s}\:{false}! \\ $$
Answered by mr W last updated on 15/Jan/22
$${w}_{{r}} ={f}_{{x}} \mathrm{cos}\:\theta+{f}_{{y}} \mathrm{sin}\:\theta \\ $$$${w}_{{rr}} ={f}_{{xx}} \mathrm{cos}^{\mathrm{2}} \:\theta+{f}_{{xy}} \mathrm{cos}\:\theta\:\mathrm{sin}\:\theta+{f}_{{yx}} \mathrm{sin}\:\theta\:\mathrm{cos}\:\theta+{f}_{{yy}} \mathrm{sin}^{\mathrm{2}} \:\theta \\ $$$${w}_{\theta} =−{f}_{{x}} {r}\:\mathrm{sin}\:\theta+{f}_{{y}} {r}\:\mathrm{cos}\:\theta \\ $$$${w}_{\theta\theta} =−{f}_{{x}} {r}\:\mathrm{cos}\:\theta−{r}\:\mathrm{sin}\:\theta\:\left(−{f}_{{xx}} {r}\:\mathrm{sin}\:\theta+{f}_{{xy}} {r}\:\mathrm{cos}\:\theta\right)−{f}_{{y}} {r}\:\mathrm{sin}\:\theta+{r}\:\mathrm{cos}\:\theta\:\left(−{f}_{{xy}} {r}\:\mathrm{sin}\:\theta+{f}_{{yy}} {r}\:\mathrm{cos}\:\theta\right) \\ $$$${w}_{\theta\theta} =−{f}_{{x}} {r}\:\mathrm{cos}\:\theta+{f}_{{xx}} {r}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta−{f}_{{xy}} {r}^{\mathrm{2}} \:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta−{f}_{{y}} {r}\:\mathrm{sin}\:\theta−{f}_{{xy}} {r}^{\mathrm{2}} \:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta+{f}_{{yy}} {r}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\theta \\ $$$${w}_{\theta\theta} =−{f}_{{x}} {r}\:\mathrm{cos}\:\theta−{f}_{{y}} {r}\:\mathrm{sin}\:\theta+{f}_{{xx}} {r}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta+{f}_{{yy}} {r}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{2}{f}_{{xy}} {r}^{\mathrm{2}} \:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta \\ $$$${w}_{{rr}} +{w}_{\theta\theta} \neq\mathrm{0} \\ $$