Menu Close

if-w-f-x-y-and-x-r-cos-y-rsin-then-prove-that-w-rr-w-0-




Question Number 164121 by mkam last updated on 14/Jan/22
if w = f(x,y) and x = r cosθ , y = rsinθ    then prove that w_(rr)  + w_(θθ)  = 0?
ifw=f(x,y)andx=rcosθ,y=rsinθthenprovethatwrr+wθθ=0?
Commented by mkam last updated on 14/Jan/22
????
????
Commented by mkam last updated on 15/Jan/22
???
???
Commented by mr W last updated on 15/Jan/22
you cant prove!  it′s false!
youcantprove!itsfalse!
Answered by mr W last updated on 15/Jan/22
w_r =f_x cos θ+f_y sin θ  w_(rr) =f_(xx) cos^2  θ+f_(xy) cos θ sin θ+f_(yx) sin θ cos θ+f_(yy) sin^2  θ  w_θ =−f_x r sin θ+f_y r cos θ  w_(θθ) =−f_x r cos θ−r sin θ (−f_(xx) r sin θ+f_(xy) r cos θ)−f_y r sin θ+r cos θ (−f_(xy) r sin θ+f_(yy) r cos θ)  w_(θθ) =−f_x r cos θ+f_(xx) r^2  sin^2  θ−f_(xy) r^2  sin θ cos θ−f_y r sin θ−f_(xy) r^2  sin θ cos θ+f_(yy) r^2  cos^2  θ  w_(θθ) =−f_x r cos θ−f_y r sin θ+f_(xx) r^2  sin^2  θ+f_(yy) r^2  cos^2  θ−2f_(xy) r^2  sin θ cos θ  w_(rr) +w_(θθ) ≠0
wr=fxcosθ+fysinθwrr=fxxcos2θ+fxycosθsinθ+fyxsinθcosθ+fyysin2θwθ=fxrsinθ+fyrcosθwθθ=fxrcosθrsinθ(fxxrsinθ+fxyrcosθ)fyrsinθ+rcosθ(fxyrsinθ+fyyrcosθ)wθθ=fxrcosθ+fxxr2sin2θfxyr2sinθcosθfyrsinθfxyr2sinθcosθ+fyyr2cos2θwθθ=fxrcosθfyrsinθ+fxxr2sin2θ+fyyr2cos2θ2fxyr2sinθcosθwrr+wθθ0

Leave a Reply

Your email address will not be published. Required fields are marked *