Menu Close

if-we-have-DE-d-2-x-t-dt-2-sinx-then-find-x-t-1-x-t-acosht-bsinht-2-x-t-a-bt-3-x-t-ae-t-be-2t-4-x-t-acost-bsint-




Question Number 128430 by sachin1221 last updated on 07/Jan/21
if we have DE  ((d^2 x(t))/dt^2 ) = −sinx  then find  x(t)  1. x(t)= acosht+bsinht  2. x(t)= a+bt  3. x(t)= ae^t  + be^(2t)   4. x(t)= acost + bsint
ifwehaveDEd2x(t)dt2=sinxthenfindx(t)1.x(t)=acosht+bsinht2.x(t)=a+bt3.x(t)=aet+be2t4.x(t)=acost+bsint
Commented by mr W last updated on 07/Jan/21
i think all options are wrong.
ithinkalloptionsarewrong.
Commented by sachin1221 last updated on 07/Jan/21
then what is correct answer
thenwhatiscorrectanswer
Answered by mr W last updated on 07/Jan/21
let x′=u  x′′=u(du/dx)  u(du/dx)=−sin x  (u^2 /2)=cos x+a  u=(dx/dt)=±(√(2(cos x+a)))  (dx/( (√(cos x+a))))=±(√2)dt  ∫(dx/( (√(cos x+a))))=±(√2)∫dt  ((2F((x/2)∣(2/(a+1))))/( (√(a+1))))=(√2)(b±t)  F((x/2)∣(2/(a+1)))=(b±t)(√((a+1)/2))  or  F((x/2)∣(1/a^2 ))=a(b±t)  F=incomplete elliptic integral of  the first kind
letx=ux=ududxududx=sinxu22=cosx+au=dxdt=±2(cosx+a)dxcosx+a=±2dtdxcosx+a=±2dt2F(x22a+1)a+1=2(b±t)F(x22a+1)=(b±t)a+12orF(x21a2)=a(b±t)F=incompleteellipticintegralofthefirstkind
Commented by sachin1221 last updated on 10/Jan/21
i didn′t get last 3 steps
ididntgetlast3steps
Commented by mr W last updated on 10/Jan/21

Leave a Reply

Your email address will not be published. Required fields are marked *