Menu Close

if-we-have-DE-d-2-x-t-dt-2-sinx-then-find-x-t-1-x-t-acosht-bsinht-2-x-t-a-bt-3-x-t-ae-t-be-2t-4-x-t-acost-bsint-




Question Number 128430 by sachin1221 last updated on 07/Jan/21
if we have DE  ((d^2 x(t))/dt^2 ) = −sinx  then find  x(t)  1. x(t)= acosht+bsinht  2. x(t)= a+bt  3. x(t)= ae^t  + be^(2t)   4. x(t)= acost + bsint
$$\boldsymbol{{if}}\:\boldsymbol{{we}}\:\boldsymbol{{have}}\:\boldsymbol{{DE}} \\ $$$$\frac{\boldsymbol{{d}}^{\mathrm{2}} \boldsymbol{{x}}\left({t}\right)}{\boldsymbol{{dt}}^{\mathrm{2}} }\:=\:−\boldsymbol{{sinx}} \\ $$$$\boldsymbol{{then}}\:\boldsymbol{{find}}\:\:\boldsymbol{{x}}\left(\boldsymbol{{t}}\right) \\ $$$$\mathrm{1}.\:\boldsymbol{{x}}\left(\boldsymbol{{t}}\right)=\:\boldsymbol{{acosht}}+\boldsymbol{{bsinht}} \\ $$$$\mathrm{2}.\:\boldsymbol{{x}}\left(\boldsymbol{{t}}\right)=\:\boldsymbol{{a}}+\boldsymbol{{bt}} \\ $$$$\mathrm{3}.\:\boldsymbol{{x}}\left(\boldsymbol{{t}}\right)=\:\boldsymbol{{ae}}^{\boldsymbol{{t}}} \:+\:\boldsymbol{{be}}^{\mathrm{2}\boldsymbol{{t}}} \\ $$$$\mathrm{4}.\:\boldsymbol{{x}}\left(\boldsymbol{{t}}\right)=\:\boldsymbol{{acost}}\:+\:\boldsymbol{{bsint}} \\ $$
Commented by mr W last updated on 07/Jan/21
i think all options are wrong.
$${i}\:{think}\:{all}\:{options}\:{are}\:{wrong}. \\ $$
Commented by sachin1221 last updated on 07/Jan/21
then what is correct answer
$$\boldsymbol{{then}}\:\boldsymbol{{what}}\:\boldsymbol{{is}}\:\boldsymbol{{correct}}\:\boldsymbol{{answer}} \\ $$$$ \\ $$
Answered by mr W last updated on 07/Jan/21
let x′=u  x′′=u(du/dx)  u(du/dx)=−sin x  (u^2 /2)=cos x+a  u=(dx/dt)=±(√(2(cos x+a)))  (dx/( (√(cos x+a))))=±(√2)dt  ∫(dx/( (√(cos x+a))))=±(√2)∫dt  ((2F((x/2)∣(2/(a+1))))/( (√(a+1))))=(√2)(b±t)  F((x/2)∣(2/(a+1)))=(b±t)(√((a+1)/2))  or  F((x/2)∣(1/a^2 ))=a(b±t)  F=incomplete elliptic integral of  the first kind
$${let}\:{x}'={u} \\ $$$${x}''={u}\frac{{du}}{{dx}} \\ $$$${u}\frac{{du}}{{dx}}=−\mathrm{sin}\:{x} \\ $$$$\frac{{u}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{cos}\:{x}+{a} \\ $$$${u}=\frac{{dx}}{{dt}}=\pm\sqrt{\mathrm{2}\left(\mathrm{cos}\:{x}+{a}\right)} \\ $$$$\frac{{dx}}{\:\sqrt{\mathrm{cos}\:{x}+{a}}}=\pm\sqrt{\mathrm{2}}{dt} \\ $$$$\int\frac{{dx}}{\:\sqrt{\mathrm{cos}\:{x}+{a}}}=\pm\sqrt{\mathrm{2}}\int{dt} \\ $$$$\frac{\mathrm{2}{F}\left(\frac{{x}}{\mathrm{2}}\mid\frac{\mathrm{2}}{{a}+\mathrm{1}}\right)}{\:\sqrt{{a}+\mathrm{1}}}=\sqrt{\mathrm{2}}\left({b}\pm{t}\right) \\ $$$${F}\left(\frac{{x}}{\mathrm{2}}\mid\frac{\mathrm{2}}{{a}+\mathrm{1}}\right)=\left({b}\pm{t}\right)\sqrt{\frac{{a}+\mathrm{1}}{\mathrm{2}}} \\ $$$${or} \\ $$$${F}\left(\frac{{x}}{\mathrm{2}}\mid\frac{\mathrm{1}}{{a}^{\mathrm{2}} }\right)={a}\left({b}\pm{t}\right) \\ $$$${F}={incomplete}\:{elliptic}\:{integral}\:{of} \\ $$$${the}\:{first}\:{kind} \\ $$
Commented by sachin1221 last updated on 10/Jan/21
i didn′t get last 3 steps
$${i}\:{didn}'{t}\:{get}\:{last}\:\mathrm{3}\:{steps} \\ $$
Commented by mr W last updated on 10/Jan/21

Leave a Reply

Your email address will not be published. Required fields are marked *