Menu Close

If-we-have-y-e-x-What-is-d-dy-e-x-If-we-derivate-with-y-Please-




Question Number 84890 by Hassen_Timol last updated on 17/Mar/20
If we have :     y = e^x     What is :   (d/dy)e^x  = ...    If we derivate with y...    Please...
$$\mathrm{If}\:\mathrm{we}\:\mathrm{have}\::\:\:\:\:\:{y}\:=\:{e}^{{x}} \\ $$$$ \\ $$$${W}\mathrm{hat}\:\mathrm{is}\::\:\:\:\frac{\mathrm{d}}{\mathrm{d}{y}}{e}^{{x}} \:=\:… \\ $$$$ \\ $$$$\mathrm{If}\:\mathrm{we}\:\mathrm{derivate}\:\mathrm{with}\:{y}… \\ $$$$ \\ $$$$\mathrm{Please}… \\ $$
Commented by mr W last updated on 17/Mar/20
e^x =y  ((d(e^x ))/dy)=((d(y))/dy)=1
$${e}^{{x}} ={y} \\ $$$$\frac{{d}\left({e}^{{x}} \right)}{{dy}}=\frac{{d}\left({y}\right)}{{dy}}=\mathrm{1} \\ $$
Commented by Hassen_Timol last updated on 17/Mar/20
Ohhhh, it was really easy in facts,  I thought about that but I thought  that it was not correct since it′s so  easy. Thanks a lot, Mr W.
$$\mathrm{Ohhhh},\:\mathrm{it}\:\mathrm{was}\:\mathrm{really}\:\mathrm{easy}\:\mathrm{in}\:\mathrm{facts}, \\ $$$$\mathrm{I}\:\mathrm{thought}\:\mathrm{about}\:\mathrm{that}\:\mathrm{but}\:\mathrm{I}\:\mathrm{thought} \\ $$$$\mathrm{that}\:\mathrm{it}\:\mathrm{was}\:\mathrm{not}\:\mathrm{correct}\:\mathrm{since}\:\mathrm{it}'\mathrm{s}\:\mathrm{so} \\ $$$$\mathrm{easy}.\:\mathrm{Thanks}\:\mathrm{a}\:\mathrm{lot},\:\mathrm{Mr}\:\mathrm{W}. \\ $$
Commented by mr W last updated on 17/Mar/20
you can also do it in complex way:  y=e^x   ⇒x=ln y ⇒(dx/dy)=(1/y)=(1/e^x )  ((d(e^x ))/dy)=((d(e^x ))/dx)×(dx/dy)=e^x ×(1/y)=e^x ×(1/e^x )=1
$${you}\:{can}\:{also}\:{do}\:{it}\:{in}\:{complex}\:{way}: \\ $$$${y}={e}^{{x}} \\ $$$$\Rightarrow{x}=\mathrm{ln}\:{y}\:\Rightarrow\frac{{dx}}{{dy}}=\frac{\mathrm{1}}{{y}}=\frac{\mathrm{1}}{{e}^{{x}} } \\ $$$$\frac{{d}\left({e}^{{x}} \right)}{{dy}}=\frac{{d}\left({e}^{{x}} \right)}{{dx}}×\frac{{dx}}{{dy}}={e}^{{x}} ×\frac{\mathrm{1}}{{y}}={e}^{{x}} ×\frac{\mathrm{1}}{{e}^{{x}} }=\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *