Question Number 173829 by mnjuly1970 last updated on 19/Jul/22
![If , x∈ [0 , 1] , ∣ (√(1−x^( 2) )) −ax−b ∣≤ (((√2) −1)/2) find the values of ( a , b ) a , b∈ R.](https://www.tinkutara.com/question/Q173829.png)
Commented by kaivan.ahmadi last updated on 19/Jul/22

Answered by mahdipoor last updated on 19/Jul/22
![f(x)=(√(1−x^2 ))−ax−b (df/dx)=((−x)/( (√(1−x^2 ))))−a=0 or ∄ critical point in [0,1] ⇒ 0,1, (if a<0) ((−a)/( (√(1+a^2 )))) ∣f∣≤(((√2)−1)/2)=c ⇒ −c≤f≤c { ((x=0 ⇒ −c≤1−b≤c)),((x=1 ⇒ −c≤a+b≤c)),((x=((−a)/( (√(1+a^2 )))) ⇒ −c≤(√(1+a^2 ))−b≤c)) :} ⇒^((I)) { ((1−c≤b≤1+c (I))),((1−2c≤a≤2c+1 )),((−2(√(c^2 +c))≤a≤2(√(c^2 +c)))) :} ⇒ { ((1−c≤b≤1+c)),((−2(√(c^2 −c))≤1−2c≤a≤2(√(c^2 +c))≤2c+1)) :} a<0 & { ((((3−(√2))/2)≤b≤(((√2)+1)/2))),((2−(√2)≤a≤(√2))) :} ⇒ ∄ if a≥0 : critical point in [0,1] ⇒ 0,1 { ((x=0 ⇒ −c≤1−b≤c ⇒1−c≤b≤1+c)),((x=1 ⇒ −c≤a+b≤c ⇒1−2c≤a≤2c+1 )) :} ⇒ a≥0 & { ((((3−(√2))/2)≤b≤(((√2)+1)/2))),((2−(√2)≤a≤(√2))) :} ⇒⇒ { ((((3−(√2))/2)≤b≤(((√2)+1)/2))),((2−(√2)≤a≤(√2))) :}](https://www.tinkutara.com/question/Q173853.png)
Commented by mnjuly1970 last updated on 20/Jul/22

Commented by mahdipoor last updated on 20/Jul/22
