Menu Close

If-x-0-1-1-x-2-ax-b-2-1-2-find-the-values-of-a-b-a-b-R-




Question Number 173829 by mnjuly1970 last updated on 19/Jul/22
      If  , x∈ [0 , 1]         ,    ∣ (√(1−x^( 2) )) −ax−b ∣≤ (((√2) −1)/2)      find the values of  ( a , b )     a , b∈ R.
If,x[0,1],1x2axb∣⩽212findthevaluesof(a,b)a,bR.
Commented by kaivan.ahmadi last updated on 19/Jul/22
we can find b, easily  let f(x)=∣(√(1−x^2 ))−ax−b∣  f(0)=∣1−b∣≤(((√2)−1)/2)  ⇒((1−(√2))/2)≤1−b≤(((√2)−1)/2)⇒  ⇒((1−(√2))/2)≤b−1≤(((√2)−1)/2)  ⇒((3−(√2))/2)≤b≤((1+(√2))/2)
wecanfindb,easilyletf(x)=∣1x2axbf(0)=∣1b∣⩽2121221b212122b1212322b1+22
Answered by mahdipoor last updated on 19/Jul/22
f(x)=(√(1−x^2 ))−ax−b  (df/dx)=((−x)/( (√(1−x^2 ))))−a=0 or ∄    critical point in [0,1] ⇒ 0,1, (if a<0) ((−a)/( (√(1+a^2 ))))  ∣f∣≤(((√2)−1)/2)=c ⇒ −c≤f≤c   { ((x=0 ⇒ −c≤1−b≤c)),((x=1 ⇒ −c≤a+b≤c)),((x=((−a)/( (√(1+a^2 )))) ⇒ −c≤(√(1+a^2 ))−b≤c)) :}  ⇒^((I))  { ((1−c≤b≤1+c     (I))),((1−2c≤a≤2c+1 )),((−2(√(c^2 +c))≤a≤2(√(c^2 +c)))) :}  ⇒ { ((1−c≤b≤1+c)),((−2(√(c^2 −c))≤1−2c≤a≤2(√(c^2 +c))≤2c+1)) :}  a<0  &  { ((((3−(√2))/2)≤b≤(((√2)+1)/2))),((2−(√2)≤a≤(√2))) :} ⇒ ∄  if a≥0 :  critical point in [0,1] ⇒ 0,1   { ((x=0 ⇒ −c≤1−b≤c ⇒1−c≤b≤1+c)),((x=1 ⇒ −c≤a+b≤c ⇒1−2c≤a≤2c+1 )) :}  ⇒ a≥0 &  { ((((3−(√2))/2)≤b≤(((√2)+1)/2))),((2−(√2)≤a≤(√2))) :}  ⇒⇒ { ((((3−(√2))/2)≤b≤(((√2)+1)/2))),((2−(√2)≤a≤(√2))) :}
f(x)=1x2axbdfdx=x1x2a=0orcriticalpointin[0,1]0,1,(ifa<0)a1+a2f∣⩽212=ccfc{x=0c1bcx=1ca+bcx=a1+a2c1+a2bc(I){1cb1+c(I)12ca2c+12c2+ca2c2+c{1cb1+c2c2c12ca2c2+c2c+1a<0&{322b2+1222a2ifa0:criticalpointin[0,1]0,1{x=0c1bc1cb1+cx=1ca+bc12ca2c+1a0&{322b2+1222a2⇒⇒{322b2+1222a2
Commented by mnjuly1970 last updated on 20/Jul/22
zendeh bashid ostad   sepas...
zendehbashidostadsepas
Commented by mahdipoor last updated on 20/Jul/22
sharmande mikonid mano ,   man ostad nistam ... :)
sharmandemikonidmano,manostadnistam:)

Leave a Reply

Your email address will not be published. Required fields are marked *