Menu Close

If-x-0-1-x-n-1-x-n-2-x-n-Find-lim-n-x-n-n-2-1-8-k-1-n-1-1-x-k-




Question Number 189823 by Shrinava last updated on 22/Mar/23
If:   x_0  = 1          x_(n+1)  = (√(x_n ^2  + x_n ))  Find:   Ω =lim_(n→∞)  (x_n - (n/2) + (1/8) Σ_(k=1) ^(n−1)  (1/x_k ))
$$\mathrm{If}:\:\:\:\mathrm{x}_{\mathrm{0}} \:=\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{x}_{\boldsymbol{\mathrm{n}}+\mathrm{1}} \:=\:\sqrt{\mathrm{x}_{\boldsymbol{\mathrm{n}}} ^{\mathrm{2}} \:+\:\mathrm{x}_{\boldsymbol{\mathrm{n}}} } \\ $$$$\mathrm{Find}:\:\:\:\Omega\:=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{x}_{\boldsymbol{\mathrm{n}}} -\:\frac{\mathrm{n}}{\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{8}}\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}−\mathrm{1}} {\sum}}\:\frac{\mathrm{1}}{\mathrm{x}_{\boldsymbol{\mathrm{k}}} }\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *