Question Number 17270 by VEGAMIND last updated on 03/Jul/17
$$\boldsymbol{\mathrm{If}}\:\boldsymbol{\mathrm{x}}=\frac{\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{2}}.\:\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}} \\ $$$$\frac{\boldsymbol{\mathrm{x}}^{\mathrm{3}} −\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{7}\boldsymbol{\mathrm{x}}−\mathrm{1}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{x}}+\mathrm{1}}\:\:\boldsymbol{\mathrm{decimal}}\:\boldsymbol{\mathrm{point}}. \\ $$
Commented by 18±1 last updated on 03/Jul/17
$$.\mathrm{2}\boldsymbol{{x}}=\mathrm{1}+\sqrt{\mathrm{17}} \\ $$$$\mathrm{2}\boldsymbol{{x}}−\mathrm{1}=\sqrt{\mathrm{17}}\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{4}\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{4}\boldsymbol{{x}}+\mathrm{1}=\mathrm{17} \\ $$$$\Rightarrow\boldsymbol{{x}}^{\mathrm{2}} −\boldsymbol{{x}}+\mathrm{1}=\mathrm{5}\:\:\:\:\Rightarrow\:\:\boldsymbol{{x}}^{\mathrm{3}} =\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{5}\boldsymbol{{x}} \\ $$$$.\:\boldsymbol{{x}}^{\mathrm{3}} −\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{7}\boldsymbol{{x}}−\mathrm{1}=\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{5}\boldsymbol{{x}}−\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{7}\boldsymbol{{x}}−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=−\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{{x}}−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=−\left(\boldsymbol{{x}}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}\boldsymbol{{x}}−\mathrm{1}=\sqrt{\mathrm{17}} \\ $$$$\mathrm{2}\boldsymbol{{x}}−\mathrm{2}=\sqrt{\mathrm{17}}−\mathrm{1} \\ $$$$\Rightarrow\boldsymbol{{x}}−\mathrm{1}=\frac{\sqrt{\mathrm{17}}−\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{\boldsymbol{{x}}^{\mathrm{3}} −\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{7}\boldsymbol{{x}}−\mathrm{1}}{\boldsymbol{{x}}^{\mathrm{2}} −\boldsymbol{{x}}+\mathrm{1}}=\frac{\mathrm{5}}{−\left(\frac{\sqrt{\mathrm{17}}−\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$
Commented by 18±1 last updated on 03/Jul/17
$$\boldsymbol{{sorry}}\:\boldsymbol{{I}}\:\boldsymbol{{wrong}}\:\boldsymbol{{at}}\:\boldsymbol{{x}}^{\mathrm{2}} −\boldsymbol{{x}}+\mathrm{1}=\mathrm{5} \\ $$$$\Rightarrow\boldsymbol{{x}}^{\mathrm{3}} =\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{5}\boldsymbol{{x}} \\ $$$$\boldsymbol{{right}}\:\boldsymbol{{is}}\:\boldsymbol{{x}}^{\mathrm{3}} =\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{4}\boldsymbol{{x}} \\ $$$$\boldsymbol{{use}}\:\boldsymbol{{this}}\:\boldsymbol{{tecnip}},\:\boldsymbol{{let}}\:\boldsymbol{{you}}\:\boldsymbol{{try}}\:\boldsymbol{{again}} \\ $$
Answered by mrW1 last updated on 03/Jul/17
$$\boldsymbol{\mathrm{x}}=\frac{\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{2}} \\ $$$$\mathrm{2x}−\mathrm{1}=\sqrt{\mathrm{17}} \\ $$$$\mathrm{4x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{1}=\mathrm{17} \\ $$$$\mathrm{4x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{4}=\mathrm{20} \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}=\mathrm{5} \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{x}=\mathrm{4} \\ $$$$\mathrm{x}^{\mathrm{3}} −\mathrm{x}^{\mathrm{2}} =\mathrm{4x} \\ $$$$\mathrm{x}^{\mathrm{3}} −\mathrm{2x}^{\mathrm{2}} +\mathrm{7x}−\mathrm{1}=\mathrm{4x}−\mathrm{x}^{\mathrm{2}} +\mathrm{7x}−\mathrm{1} \\ $$$$\mathrm{x}^{\mathrm{3}} −\mathrm{2x}^{\mathrm{2}} +\mathrm{7x}−\mathrm{1}=−\mathrm{x}^{\mathrm{2}} +\mathrm{11x}−\mathrm{1} \\ $$$$\mathrm{x}^{\mathrm{3}} −\mathrm{2x}^{\mathrm{2}} +\mathrm{7x}−\mathrm{1}=−\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)+\mathrm{10x} \\ $$$$\mathrm{x}^{\mathrm{3}} −\mathrm{2x}^{\mathrm{2}} +\mathrm{7x}−\mathrm{1}=−\mathrm{5}+\mathrm{10x} \\ $$$$\mathrm{x}^{\mathrm{3}} −\mathrm{2x}^{\mathrm{2}} +\mathrm{7x}−\mathrm{1}=\mathrm{5}\left(\mathrm{2x}−\mathrm{1}\right) \\ $$$$\mathrm{x}^{\mathrm{3}} −\mathrm{2x}^{\mathrm{2}} +\mathrm{7x}−\mathrm{1}=\mathrm{5}\sqrt{\mathrm{17}} \\ $$$$ \\ $$$$\Rightarrow\:\frac{\boldsymbol{\mathrm{x}}^{\mathrm{3}} −\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{7}\boldsymbol{\mathrm{x}}−\mathrm{1}}{\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{x}}+\mathrm{1}}=\frac{\mathrm{5}\sqrt{\mathrm{17}}}{\mathrm{5}}=\sqrt{\mathrm{17}}\approx\mathrm{4}.\mathrm{123} \\ $$