Menu Close

If-x-1-2-1-differentiate-cos-1-2x-1-x-2-




Question Number 44267 by rahul 19 last updated on 25/Sep/18
If xε ((1/( (√2))) , 1) ,differentiate cos^(−1) (2x(√(1−x^2 ))).
$${If}\:{x}\epsilon\:\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:,\:\mathrm{1}\right)\:,{differentiate}\:\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right). \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Sep/18
x=cosα   dx=−sinα dα  y=cos^(−1) (2cosαsinα)  y=cos^(−1) (sin2α)  now xε((1/( (√2))),1)  α ε (0,(Π/4))   so 2α ε (0,(Π/2))  when x=(1/( (√2)))   α=(Π/4)      x=1    α=0  y=cos^(−1) {cos((Π/2)−2α)}  y=(Π/2)−2α  (dy/dα)=−2     (dy/dx)=(dy/dα)×(dα/dx)=−2×((−1)/(sinα))=(2/( (√(1−x^2 )) ))   or approach  let x=sinα  dx=cosαdα  y=cos^(−1) (2sinαcosα)  y=cos^(−1) (sin2α)  xε((1/( (√2))),1)   α ε((Π/4),(Π/2))  but 2α ε((Π/2),Π)  let 2α=(Π/2)+β   2dα=dβ  y=cos^− {sin((Π/2)+β)}  y=cos^(−1) {cosβ)   y=β  dy=dβ  (dy/dx)=(dy/dβ)×(dβ/dα)×(dα/dx)=1×2×(1/(cosα))=(2/( (√(1−x^2 )) ))  pls check
$${x}={cos}\alpha\:\:\:{dx}=−{sin}\alpha\:{d}\alpha \\ $$$${y}={cos}^{−\mathrm{1}} \left(\mathrm{2}{cos}\alpha{sin}\alpha\right) \\ $$$${y}={cos}^{−\mathrm{1}} \left({sin}\mathrm{2}\alpha\right) \\ $$$${now}\:{x}\epsilon\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}},\mathrm{1}\right)\:\:\alpha\:\epsilon\:\left(\mathrm{0},\frac{\Pi}{\mathrm{4}}\right)\:\:\:{so}\:\mathrm{2}\alpha\:\epsilon\:\left(\mathrm{0},\frac{\Pi}{\mathrm{2}}\right) \\ $$$${when}\:{x}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\:\:\alpha=\frac{\Pi}{\mathrm{4}} \\ $$$$\:\:\:\:{x}=\mathrm{1}\:\:\:\:\alpha=\mathrm{0} \\ $$$${y}={cos}^{−\mathrm{1}} \left\{{cos}\left(\frac{\Pi}{\mathrm{2}}−\mathrm{2}\alpha\right)\right\} \\ $$$${y}=\frac{\Pi}{\mathrm{2}}−\mathrm{2}\alpha \\ $$$$\frac{{dy}}{{d}\alpha}=−\mathrm{2}\:\:\:\:\:\frac{{dy}}{{dx}}=\frac{{dy}}{{d}\alpha}×\frac{{d}\alpha}{{dx}}=−\mathrm{2}×\frac{−\mathrm{1}}{{sin}\alpha}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:} \\ $$$$\:{or}\:{approach} \\ $$$${let}\:{x}={sin}\alpha \\ $$$${dx}={cos}\alpha{d}\alpha \\ $$$${y}={cos}^{−\mathrm{1}} \left(\mathrm{2}{sin}\alpha{cos}\alpha\right) \\ $$$${y}={cos}^{−\mathrm{1}} \left({sin}\mathrm{2}\alpha\right) \\ $$$${x}\epsilon\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}},\mathrm{1}\right)\:\:\:\alpha\:\epsilon\left(\frac{\Pi}{\mathrm{4}},\frac{\Pi}{\mathrm{2}}\right)\:\:{but}\:\mathrm{2}\alpha\:\epsilon\left(\frac{\Pi}{\mathrm{2}},\Pi\right) \\ $$$${let}\:\mathrm{2}\alpha=\frac{\Pi}{\mathrm{2}}+\beta\:\:\:\mathrm{2}{d}\alpha={d}\beta \\ $$$${y}={cos}^{−} \left\{{sin}\left(\frac{\Pi}{\mathrm{2}}+\beta\right)\right\} \\ $$$${y}={cos}^{−\mathrm{1}} \left\{{cos}\beta\right)\:\:\:{y}=\beta \\ $$$${dy}={d}\beta \\ $$$$\frac{{dy}}{{dx}}=\frac{{dy}}{{d}\beta}×\frac{{d}\beta}{{d}\alpha}×\frac{{d}\alpha}{{dx}}=\mathrm{1}×\mathrm{2}×\frac{\mathrm{1}}{{cos}\alpha}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:} \\ $$$$\boldsymbol{{pls}}\:\boldsymbol{{check}} \\ $$$$ \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 25/Sep/18
most welcome...you are a good bowler...
$${most}\:{welcome}…{you}\:{are}\:{a}\:{good}\:{bowler}… \\ $$
Commented by rahul 19 last updated on 25/Sep/18
thanks sir ! ����

Leave a Reply

Your email address will not be published. Required fields are marked *