Menu Close

If-x-1-2-1-differentiate-cos-1-2x-1-x-2-




Question Number 44267 by rahul 19 last updated on 25/Sep/18
If xε ((1/( (√2))) , 1) ,differentiate cos^(−1) (2x(√(1−x^2 ))).
Ifxϵ(12,1),differentiatecos1(2x1x2).
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Sep/18
x=cosα   dx=−sinα dα  y=cos^(−1) (2cosαsinα)  y=cos^(−1) (sin2α)  now xε((1/( (√2))),1)  α ε (0,(Π/4))   so 2α ε (0,(Π/2))  when x=(1/( (√2)))   α=(Π/4)      x=1    α=0  y=cos^(−1) {cos((Π/2)−2α)}  y=(Π/2)−2α  (dy/dα)=−2     (dy/dx)=(dy/dα)×(dα/dx)=−2×((−1)/(sinα))=(2/( (√(1−x^2 )) ))   or approach  let x=sinα  dx=cosαdα  y=cos^(−1) (2sinαcosα)  y=cos^(−1) (sin2α)  xε((1/( (√2))),1)   α ε((Π/4),(Π/2))  but 2α ε((Π/2),Π)  let 2α=(Π/2)+β   2dα=dβ  y=cos^− {sin((Π/2)+β)}  y=cos^(−1) {cosβ)   y=β  dy=dβ  (dy/dx)=(dy/dβ)×(dβ/dα)×(dα/dx)=1×2×(1/(cosα))=(2/( (√(1−x^2 )) ))  pls check
x=cosαdx=sinαdαy=cos1(2cosαsinα)y=cos1(sin2α)nowxϵ(12,1)αϵ(0,Π4)so2αϵ(0,Π2)whenx=12α=Π4x=1α=0y=cos1{cos(Π22α)}y=Π22αdydα=2dydx=dydα×dαdx=2×1sinα=21x2orapproachletx=sinαdx=cosαdαy=cos1(2sinαcosα)y=cos1(sin2α)xϵ(12,1)αϵ(Π4,Π2)but2αϵ(Π2,Π)let2α=Π2+β2dα=dβy=cos{sin(Π2+β)}y=cos1{cosβ)y=βdy=dβdydx=dydβ×dβdα×dαdx=1×2×1cosα=21x2plscheck
Commented by tanmay.chaudhury50@gmail.com last updated on 25/Sep/18
most welcome...you are a good bowler...
mostwelcomeyouareagoodbowler
Commented by rahul 19 last updated on 25/Sep/18
thanks sir ! ����

Leave a Reply

Your email address will not be published. Required fields are marked *