Question Number 44267 by rahul 19 last updated on 25/Sep/18
$${If}\:{x}\epsilon\:\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:,\:\mathrm{1}\right)\:,{differentiate}\:\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right). \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Sep/18
$${x}={cos}\alpha\:\:\:{dx}=−{sin}\alpha\:{d}\alpha \\ $$$${y}={cos}^{−\mathrm{1}} \left(\mathrm{2}{cos}\alpha{sin}\alpha\right) \\ $$$${y}={cos}^{−\mathrm{1}} \left({sin}\mathrm{2}\alpha\right) \\ $$$${now}\:{x}\epsilon\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}},\mathrm{1}\right)\:\:\alpha\:\epsilon\:\left(\mathrm{0},\frac{\Pi}{\mathrm{4}}\right)\:\:\:{so}\:\mathrm{2}\alpha\:\epsilon\:\left(\mathrm{0},\frac{\Pi}{\mathrm{2}}\right) \\ $$$${when}\:{x}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\:\:\alpha=\frac{\Pi}{\mathrm{4}} \\ $$$$\:\:\:\:{x}=\mathrm{1}\:\:\:\:\alpha=\mathrm{0} \\ $$$${y}={cos}^{−\mathrm{1}} \left\{{cos}\left(\frac{\Pi}{\mathrm{2}}−\mathrm{2}\alpha\right)\right\} \\ $$$${y}=\frac{\Pi}{\mathrm{2}}−\mathrm{2}\alpha \\ $$$$\frac{{dy}}{{d}\alpha}=−\mathrm{2}\:\:\:\:\:\frac{{dy}}{{dx}}=\frac{{dy}}{{d}\alpha}×\frac{{d}\alpha}{{dx}}=−\mathrm{2}×\frac{−\mathrm{1}}{{sin}\alpha}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:} \\ $$$$\:{or}\:{approach} \\ $$$${let}\:{x}={sin}\alpha \\ $$$${dx}={cos}\alpha{d}\alpha \\ $$$${y}={cos}^{−\mathrm{1}} \left(\mathrm{2}{sin}\alpha{cos}\alpha\right) \\ $$$${y}={cos}^{−\mathrm{1}} \left({sin}\mathrm{2}\alpha\right) \\ $$$${x}\epsilon\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}},\mathrm{1}\right)\:\:\:\alpha\:\epsilon\left(\frac{\Pi}{\mathrm{4}},\frac{\Pi}{\mathrm{2}}\right)\:\:{but}\:\mathrm{2}\alpha\:\epsilon\left(\frac{\Pi}{\mathrm{2}},\Pi\right) \\ $$$${let}\:\mathrm{2}\alpha=\frac{\Pi}{\mathrm{2}}+\beta\:\:\:\mathrm{2}{d}\alpha={d}\beta \\ $$$${y}={cos}^{−} \left\{{sin}\left(\frac{\Pi}{\mathrm{2}}+\beta\right)\right\} \\ $$$${y}={cos}^{−\mathrm{1}} \left\{{cos}\beta\right)\:\:\:{y}=\beta \\ $$$${dy}={d}\beta \\ $$$$\frac{{dy}}{{dx}}=\frac{{dy}}{{d}\beta}×\frac{{d}\beta}{{d}\alpha}×\frac{{d}\alpha}{{dx}}=\mathrm{1}×\mathrm{2}×\frac{\mathrm{1}}{{cos}\alpha}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:} \\ $$$$\boldsymbol{{pls}}\:\boldsymbol{{check}} \\ $$$$ \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 25/Sep/18
$${most}\:{welcome}…{you}\:{are}\:{a}\:{good}\:{bowler}… \\ $$
Commented by rahul 19 last updated on 25/Sep/18
thanks sir !