Menu Close

If-x-1-2-find-the-value-of-x-4-1-x-4-




Question Number 121218 by ZiYangLee last updated on 06/Nov/20
If x=(√(1+(√2))), find the value of x^4 +(1/x^4 ).
$$\mathrm{If}\:{x}=\sqrt{\mathrm{1}+\sqrt{\mathrm{2}}},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}^{\mathrm{4}} +\frac{\mathrm{1}}{{x}^{\mathrm{4}} }. \\ $$
Answered by liberty last updated on 06/Nov/20
x^2 =1+(√2) ⇒x^4 =3+2(√2)  ⇔x^4 +(1/x^4 ) = 3+2(√2) + (1/(3+2(√2)))                       = 3+2(√2)+((3−2(√2))/(9−8))= 6
$$\mathrm{x}^{\mathrm{2}} =\mathrm{1}+\sqrt{\mathrm{2}}\:\Rightarrow\mathrm{x}^{\mathrm{4}} =\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\Leftrightarrow\mathrm{x}^{\mathrm{4}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{4}} }\:=\:\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}+\frac{\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{9}−\mathrm{8}}=\:\mathrm{6} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *