Menu Close

if-x-1-3-x-36-1-3-3-find-x-1-x-




Question Number 154385 by amin96 last updated on 17/Sep/21
if   (x)^(1/3) −((x−36))^(1/3) =3      find    x−(1/x)
ifx3x363=3findx1x
Answered by amin96 last updated on 18/Sep/21
x=t^3    ⇒   t−((t^3 −36))^(1/3) =3  ⇒  ((t^3 −36))^(1/3) =t−3  t^3 −36=t^3 −9t^2 +27t−27  ⇒  t^2 −3t−1=0  t−(1/t)=3    t^2 +(1/t^2 )=11  ⇒   (t^2 +(1/t^2 ))(t−(1/t))=33  t^3 −t+(1/t)−(1/t^3 )=33  ⇒   t^3 −(1/t^3 )=36    x−(1/x)=36
x=t3tt3363=3t3363=t3t336=t39t2+27t27t23t1=0t1t=3t2+1t2=11(t2+1t2)(t1t)=33t3t+1t1t3=33t31t3=36x1x=36
Answered by liberty last updated on 18/Sep/21
 If (x)^(1/3) −((x−36))^(1/3)  = 3 then  find x−(1/x).  solution:  ⇒3+((x−36))^(1/3) −(x)^(1/3)  = 0  ⇒27+x−36−x=−3×3((x(x−36)))^(1/3)   ⇒−9=−9 ((x(x−36)))^(1/3)    ⇒1=x^2 −36x  ⇒(1/x)=x−36 ⇒x−(1/x)=36
Ifx3x363=3thenfindx1x.solution:3+x363x3=027+x36x=3×3x(x36)39=9x(x36)31=x236x1x=x36x1x=36

Leave a Reply

Your email address will not be published. Required fields are marked *