Menu Close

If-x-1-and-x-2-are-roots-of-the-equation-acos-2x-bsin-x-c-and-2sin-x-1-sinx-2-sin-x-1-sinx-2-Then-the-value-of-b-c-a-is-




Question Number 32682 by rahul 19 last updated on 31/Mar/18
If x_1  and x_(2 )  are roots of the equation  acos 2x+bsin x = c and   2sin x_1 sinx_2 = sin x_1 +sinx_2 . Then   the value of  (b/(c−a)) is ?
Ifx1andx2arerootsoftheequationacos2x+bsinx=cand2sinx1sinx2=sinx1+sinx2.Thenthevalueofbcais?
Answered by MJS last updated on 31/Mar/18
cos 2x=2cos^2  x−1=1−2sin^2  x  acos 2x+bsin x−c=0  −2asin^2  x+bsin x+a−c=0  sin^2  x−(b/(2a))sin x−((a−c)/(2a))=0  sin x=(b/(4a))±((√(8a^2 −8ac+b^2 ))/(4a))=p±q  2(p−q)(p+q)=(p−q)+(p+q)  2p^2 −2q^2 =2p  2((b/(4a)))^2 −2(((√(8a^2 −8ac+b^2 ))/(4a)))^2 =2(b/(4a))  (b^2 /(8a^2 ))−((8a^2 −8ac+b^2 )/(8a^2 ))=(b/(2a))  ((c−a)/a)=(b/(2a))  ((c−a)/b)=(1/2)  (b/(c−a))=2
cos2x=2cos2x1=12sin2xacos2x+bsinxc=02asin2x+bsinx+ac=0sin2xb2asinxac2a=0sinx=b4a±8a28ac+b24a=p±q2(pq)(p+q)=(pq)+(p+q)2p22q2=2p2(b4a)22(8a28ac+b24a)2=2b4ab28a28a28ac+b28a2=b2acaa=b2acab=12bca=2
Commented by rahul 19 last updated on 31/Mar/18
you have assumed (p−q)=sin x_1   and (p+q)=sin x_2  ,right ?  Thank u sir!
youhaveassumed(pq)=sinx1and(p+q)=sinx2,right?Thankusir!
Commented by MJS last updated on 31/Mar/18
yes
yes

Leave a Reply

Your email address will not be published. Required fields are marked *