Menu Close

If-x-1-f-x-f-1-x-1-x-1-find-f-x-




Question Number 86160 by jagoll last updated on 27/Mar/20
If (x−1) f(x) + f((1/x)) = (1/(x−1))  find f(x)
If(x1)f(x)+f(1x)=1x1findf(x)
Commented by john santu last updated on 27/Mar/20
replace x by (1/x)  ⇒((1/x)−1)f((1/x))+f(x)= (1/((1/x)−1))  (((1−x)/x))f((1/x)) +f(x) = (x/(1−x)) [ × x ]  (1−x) f((1/x)) + xf(x) = (x^2 /(1−x)) →(ii)  multiply eq (i) by (1−x)  (1−x)f((1/x)) −(1−x)^2 f(x)= −1←(i)  (ii)−(i)  (x+(1−x)^2 ) f(x) =(x^2 /(1−x))+1  (x^2 −x+1)f(x) = ((x^2 −x+1)/(1−x))  f(x) = (1/(1−x))
replacexby1x(1x1)f(1x)+f(x)=11x1(1xx)f(1x)+f(x)=x1x[×x](1x)f(1x)+xf(x)=x21x(ii)multiplyeq(i)by(1x)(1x)f(1x)(1x)2f(x)=1(i)(ii)(i)(x+(1x)2)f(x)=x21x+1(x2x+1)f(x)=x2x+11xf(x)=11x
Commented by jagoll last updated on 27/Mar/20
thank you mr john & tanmay
thankyoumrjohn&tanmay
Commented by mathmax by abdo last updated on 27/Mar/20
(x−1)f(x)+f((1/x))=(1/(x−1)) ⇒((1/x)−1)f((1/x))+f(x) =(1/((1/x)−1)) =(x/(1−x))  we get the system  { (((x−1)f(x)+f((1/x))=(1/(x−1)))),((f(x)+((1−x)/x)f((1/x)) =(x/(1−x)))) :}  Δ_s = determinant (((x−1         1)),((1           ((1−x)/x))))=(((x−1)(1−x))/x)−1 =((x−x^2 −1+x−x)/x)  =((−x^2 +x−1)/x) ⇒f(x) =((Δf(x))/Δ)  =( determinant ((((1/(x−1))             1)),(((x/(1−x))             ((1−x)/x))))/((−x^2 +x−1)/x)) =((−(1/x)−(x/(1−x)))/((−x^2 +x−1)/x)) =((−1+x−x^2 )/(x(1−x)))×(x/(−x^2 +x−1))  =(1/(1−x)) ⇒f(x) =(1/(1−x))
(x1)f(x)+f(1x)=1x1(1x1)f(1x)+f(x)=11x1=x1xwegetthesystem{(x1)f(x)+f(1x)=1x1f(x)+1xxf(1x)=x1xΔs=|x1111xx|=(x1)(1x)x1=xx21+xxx=x2+x1xf(x)=Δf(x)Δ=|1x11x1x1xx|x2+x1x=1xx1xx2+x1x=1+xx2x(1x)×xx2+x1=11xf(x)=11x
Answered by TANMAY PANACEA. last updated on 27/Mar/20
(x−1)f(x)+f((1/x))=(1/(x−1))  replacing x by (1/x)  ((1/x)−1)f((1/x))+f(x)=(1/((1/x)−1))  f(x)=(x/(1−x))−((1−x)/x)f((1/x))  putting the value of f(x)  in given eqn  [(x−1)f(x)+f((1/x))=(1/(1−x))]  so we get  (x−1)[(x/(1−x))−((1−x)/x)f((1/x))]+f((1/x))=(1/(x−1))  −x+(((x−1)^2 )/x)f((1/x))+f((1/x))=(1/(x−1))  f((1/x))[1+((x^2 −2x+1)/x)]=(1/(x−1))+x  f((1/x))[((x+x^2 −2x+1)/x)]=((1+x^2 −x)/(x−1))  f((1/x))=(x/(x−1))=(1/(1−(1/x)))  f(x)=(1/(1−x))
(x1)f(x)+f(1x)=1x1replacingxby1x(1x1)f(1x)+f(x)=11x1f(x)=x1x1xxf(1x)puttingthevalueoff(x)ingiveneqn[(x1)f(x)+f(1x)=11x]soweget(x1)[x1x1xxf(1x)]+f(1x)=1x1x+(x1)2xf(1x)+f(1x)=1x1f(1x)[1+x22x+1x]=1x1+xf(1x)[x+x22x+1x]=1+x2xx1f(1x)=xx1=111xf(x)=11x
Commented by jagoll last updated on 27/Mar/20
thank you mister
thankyoumister
Commented by Serlea last updated on 27/Mar/20
  I think Something is wrong Sir  Line number 4: How did u get ur Second f((1/x))  2) Why didn′t you multiply the both side by (x−1) only the  left hand side of the equation.
IthinkSomethingiswrongSirLinenumber4:HowdidugeturSecondf(1x)2)Whydidntyoumultiplythebothsideby(x1)onlythelefthandsideoftheequation.
Commented by john santu last updated on 27/Mar/20
yes sir.
yessir.

Leave a Reply

Your email address will not be published. Required fields are marked *