Question Number 86160 by jagoll last updated on 27/Mar/20

Commented by john santu last updated on 27/Mar/20
![replace x by (1/x) ⇒((1/x)−1)f((1/x))+f(x)= (1/((1/x)−1)) (((1−x)/x))f((1/x)) +f(x) = (x/(1−x)) [ × x ] (1−x) f((1/x)) + xf(x) = (x^2 /(1−x)) →(ii) multiply eq (i) by (1−x) (1−x)f((1/x)) −(1−x)^2 f(x)= −1←(i) (ii)−(i) (x+(1−x)^2 ) f(x) =(x^2 /(1−x))+1 (x^2 −x+1)f(x) = ((x^2 −x+1)/(1−x)) f(x) = (1/(1−x))](https://www.tinkutara.com/question/Q86172.png)
Commented by jagoll last updated on 27/Mar/20

Commented by mathmax by abdo last updated on 27/Mar/20

Answered by TANMAY PANACEA. last updated on 27/Mar/20
![(x−1)f(x)+f((1/x))=(1/(x−1)) replacing x by (1/x) ((1/x)−1)f((1/x))+f(x)=(1/((1/x)−1)) f(x)=(x/(1−x))−((1−x)/x)f((1/x)) putting the value of f(x) in given eqn [(x−1)f(x)+f((1/x))=(1/(1−x))] so we get (x−1)[(x/(1−x))−((1−x)/x)f((1/x))]+f((1/x))=(1/(x−1)) −x+(((x−1)^2 )/x)f((1/x))+f((1/x))=(1/(x−1)) f((1/x))[1+((x^2 −2x+1)/x)]=(1/(x−1))+x f((1/x))[((x+x^2 −2x+1)/x)]=((1+x^2 −x)/(x−1)) f((1/x))=(x/(x−1))=(1/(1−(1/x))) f(x)=(1/(1−x))](https://www.tinkutara.com/question/Q86163.png)
Commented by jagoll last updated on 27/Mar/20

Commented by Serlea last updated on 27/Mar/20

Commented by john santu last updated on 27/Mar/20
