Menu Close

if-x-1-x-2-5-then-find-the-value-of-x-x-6-1-x-8-1-




Question Number 159961 by abdullah_ff last updated on 23/Nov/21
if x + (1/x) = 2(√5) then find the value of  ((x(x^6  − 1))/(x^8  − 1))
ifx+1x=25thenfindthevalueofx(x61)x81
Answered by Rasheed.Sindhi last updated on 23/Nov/21
     A Hard & Difficult Approach!  x + (1/x) = 2(√5) ; ((x(x^6  − 1))/(x^8  − 1))=?  x^2 −2(√5) x+1=0  x=((2(√5) ±(√(20−4)))/2)=(√5) ±2  ▶x−1_(   +2) =(√5) +1_(  +2) ,(√5) −3_(    +2) .........(i)      x+1=(√5) +3,(√5) −1.........(ii)  (i)×(ii):      x^2 −1=8+4(√5) , 8−4(√5) .......(iii)       x^2 +1=10+4(√5) , 10−4(√5) .....(iv)  (iii)×(iv):       x^4 −1=160+72(√5) , 160−72(√5) ...(v)       x^4 +1=162+72(√5) , 162−72(√5)....(vi)  (v)×(vi):        x^8 −1=51840±23184(√5)   ▶(i):x−1=1+(√5) ,−3+(√5) ........(vii)       (iv):x^2 +1=10±4(√5)               x^2 +x+1=(10±4(√5) )+(±2+(√5) )                        =12+5(√5) ,8−3(√5) ....(viii)  (vii)×(viii):  x^3 −1=37+17(√5) ,−39+17(√5) .....(ix)  x^3 +1=39+17(√5) , −37+17(√5) ....(x)  (ix)×(x):  x^6 −1=2888±1292(√5)   ▶((x(x^6  − 1))/(x^8  − 1))=((((√5) ±2)(2888±1292(√5) ))/(51840±23184(√5) ))  =((±12236+5472(√5))/(51840±23184(√5) )).((51840∓23184(√5) )/(51840∓23184(√5) ))  =((−10944(√5))/((51840)^2 −(23184^2 .5)))  =((−10944(√5))/(−103680))  =((19(√5) )/(180))
AHard&DifficultApproach!x+1x=25;x(x61)x81=?x225x+1=0x=25±2042=5±2x1+2=5+1+2,53+2(i)x+1=5+3,51(ii)(i)×(ii):x21=8+45,845.(iii)x2+1=10+45,1045..(iv)(iii)×(iv):x41=160+725,160725(v)x4+1=162+725,162725.(vi)(v)×(vi):x81=51840±231845(i):x1=1+5,3+5..(vii)(iv):x2+1=10±45x2+x+1=(10±45)+(±2+5)=12+55,835.(viii)(vii)×(viii):x31=37+175,39+175..(ix)x3+1=39+175,37+175.(x)(ix)×(x):x61=2888±12925x(x61)x81=(5±2)(2888±12925)51840±231845=±12236+5472551840±231845.5184023184551840231845=109445(51840)2(231842.5)=109445103680=195180
Commented by abdullah_ff last updated on 25/Nov/21
Rasheed sir, you are really great..
Rasheedsir,youarereallygreat..
Answered by Rasheed.Sindhi last updated on 23/Nov/21
▶(x+(1/x))^2 =(2(√5) )^2 ⇒x^2 +(1/x^2 )=20−2  ⇒(x^2 +(1/x^2 ))^2 =(18)^2 ⇒x^4 +(1/x^4 )=322...(i)      ⇒(x^4 +(1/x^4 ))^2 =(322)^2 ⇒x^8 +(1/x^8 )=322^2 −2...(ii)      ▶(x+(1/x))^3 =(2(√5) )^3                   ⇒x^3 +(1/x^3 )−3(x+(1/x))=8.5.(√5)            ⇒x^3 +(1/x^3 )−3(2(√5) )=8.5.(√5)        ⇒x^3 +(1/x^3 )=46(√5) ........(iii)      (i)×(iii):  (x^4 +(1/x^4 ))(x^3 +(1/x^3 ))=(322)(46(√5))  x^7 +(1/x^7 )+x+(1/x)=(322)(46(√5))  x^7 +(1/x^7 )+2(√5)=(322)(46(√5))  x^7 +(1/x^7 )=(322)(46(√5))−2(√5)      ▶((x(x^6  − 1))/(x^8  − 1))=(x^7 /(x^8 −1))−(x/(x^8 −1))  =(1/((x^8 −1)/x^7 ))−(1/((x^8 −1)/x))=(1/(x−(1/x^7 )))−(1/(x^7 −(1/x)))  =(((x^7 −(1/x))−(x−(1/x^7 )))/((x−(1/x^7 ))(x^7 −(1/x))))  =(((x^7 +(1/x^7 ))−(x+(1/x)))/((x^8 +(1/x^8 ))−2))  =((()−(x+(1/x)))/((x^8 +(1/x^8 ))−2))
(x+1x)2=(25)2x2+1x2=202(x2+1x2)2=(18)2x4+1x4=322(i)(x4+1x4)2=(322)2x8+1x8=32222(ii)(x+1x)3=(25)3x3+1x33(x+1x)=8.5.5x3+1x33(25)=8.5.5x3+1x3=465..(iii)(i)×(iii):(x4+1x4)(x3+1x3)=(322)(465)x7+1x7+x+1x=(322)(465)x7+1x7+25=(322)(465)x7+1x7=(322)(465)25x(x61)x81=x7x81xx81=1x81x71x81x=1x1x71x71x=(x71x)(x1x7)(x1x7)(x71x)=(x7+1x7)(x+1x)(x8+1x8)2=()(x+1x)(x8+1x8)2
Commented by abdullah_ff last updated on 23/Nov/21
E^X Cellent SiR
EXCellentSiR
Answered by som(math1967) last updated on 23/Nov/21
((x(x^6 −1))/(x^8 −1))  =(((x(x^6 −1))/x^4 )/((x^8 −1)/x^4 ))  =((x^3 −(1/x^3 ))/(x^4 −(1/x^4 )))  =(((x−(1/x))(x^2 +1+(1/x^2 )))/((x−(1/x))(x+(1/x))(x^2 +(1/x^2 )))) [(x−(1/x))≠0]  =(((x+(1/x))^2 −2.x.(1/x)+1)/(2(√5){(x+(1/x))^2 −2.x.(1/x)}))  =((20−1)/(2(√5)(20−2)))  =((19)/(36(√5)))=((19(√5))/(180))
x(x61)x81=x(x61)x4x81x4=x31x3x41x4=(x1x)(x2+1+1x2)(x1x)(x+1x)(x2+1x2)[(x1x)0]=(x+1x)22.x.1x+125{(x+1x)22.x.1x}=20125(202)=19365=195180
Commented by abdullah_ff last updated on 23/Nov/21
this is great. thank you sir..
thisisgreat.thankyousir..
Commented by Rasheed.Sindhi last updated on 23/Nov/21
Efficient!
Efficient!
Answered by Tokugami last updated on 23/Nov/21
x+(1/x)=((x^2 +1)/x)=2(√5)  (x+(1/x))^2 =(2(√5))^2   x^2 +2+(1/x^2 )=20  ((1+x^4 )/x^2 )=18  ((x(x^2 −1)(x^4 +x^2 +1))/((x^2 −1)(x^2 +1)(x^4 +1)))=((x/(x^2 +1)))(((x^4 +1+x^2 )/(x^4 +1)))=((x/(x^2 +1)))(1+(x^2 /(x^4 +1)))  =((1/(2(√5))))(1+(1/(18)))  =((19)/(36(√5)))
x+1x=x2+1x=25(x+1x)2=(25)2x2+2+1x2=201+x4x2=18x(x21)(x4+x2+1)(x21)(x2+1)(x4+1)=(xx2+1)(x4+1+x2x4+1)=(xx2+1)(1+x2x4+1)=(125)(1+118)=19365
Commented by abdullah_ff last updated on 23/Nov/21
thanks for your kind help sir
thanksforyourkindhelpsir
Commented by Rasheed.Sindhi last updated on 23/Nov/21
Efficient!
Efficient!

Leave a Reply

Your email address will not be published. Required fields are marked *