Question Number 159961 by abdullah_ff last updated on 23/Nov/21
$$\mathrm{if}\:{x}\:+\:\frac{\mathrm{1}}{{x}}\:=\:\mathrm{2}\sqrt{\mathrm{5}}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{{x}\left({x}^{\mathrm{6}} \:−\:\mathrm{1}\right)}{{x}^{\mathrm{8}} \:−\:\mathrm{1}} \\ $$
Answered by Rasheed.Sindhi last updated on 23/Nov/21
$$\:\:\:\:\:\underline{\mathbb{A}\:\mathbb{H}\mathrm{ard}\:\&\:\mathbb{D}\mathrm{ifficult}\:\mathbb{A}\mathrm{pproach}!} \\ $$$${x}\:+\:\frac{\mathrm{1}}{{x}}\:=\:\mathrm{2}\sqrt{\mathrm{5}}\:;\:\frac{{x}\left({x}^{\mathrm{6}} \:−\:\mathrm{1}\right)}{{x}^{\mathrm{8}} \:−\:\mathrm{1}}=? \\ $$$${x}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{5}}\:{x}+\mathrm{1}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{2}\sqrt{\mathrm{5}}\:\pm\sqrt{\mathrm{20}−\mathrm{4}}}{\mathrm{2}}=\sqrt{\mathrm{5}}\:\pm\mathrm{2} \\ $$$$\blacktriangleright{x}\underset{\:\:\:\underline{+\mathrm{2}}} {−\mathrm{1}}=\sqrt{\mathrm{5}}\:\underset{\:\:\underline{+\mathrm{2}}} {+\mathrm{1}},\sqrt{\mathrm{5}}\:\underset{\:\:\:\:\underline{+\mathrm{2}}} {−\mathrm{3}}………\left({i}\right) \\ $$$$\:\:\:\:{x}+\mathrm{1}=\sqrt{\mathrm{5}}\:+\mathrm{3},\sqrt{\mathrm{5}}\:−\mathrm{1}………\left({ii}\right) \\ $$$$\left({i}\right)×\left({ii}\right): \\ $$$$\:\:\:\:{x}^{\mathrm{2}} −\mathrm{1}=\mathrm{8}+\mathrm{4}\sqrt{\mathrm{5}}\:,\:\mathrm{8}−\mathrm{4}\sqrt{\mathrm{5}}\:…….\left({iii}\right) \\ $$$$\:\:\:\:\:{x}^{\mathrm{2}} +\mathrm{1}=\mathrm{10}+\mathrm{4}\sqrt{\mathrm{5}}\:,\:\mathrm{10}−\mathrm{4}\sqrt{\mathrm{5}}\:…..\left({iv}\right) \\ $$$$\left({iii}\right)×\left({iv}\right): \\ $$$$\:\:\:\:\:{x}^{\mathrm{4}} −\mathrm{1}=\mathrm{160}+\mathrm{72}\sqrt{\mathrm{5}}\:,\:\mathrm{160}−\mathrm{72}\sqrt{\mathrm{5}}\:…\left({v}\right) \\ $$$$\:\:\:\:\:{x}^{\mathrm{4}} +\mathrm{1}=\mathrm{162}+\mathrm{72}\sqrt{\mathrm{5}}\:,\:\mathrm{162}−\mathrm{72}\sqrt{\mathrm{5}}….\left({vi}\right) \\ $$$$\left({v}\right)×\left({vi}\right): \\ $$$$\:\:\:\:\:\:{x}^{\mathrm{8}} −\mathrm{1}=\mathrm{51840}\pm\mathrm{23184}\sqrt{\mathrm{5}}\: \\ $$$$\blacktriangleright\left({i}\right):{x}−\mathrm{1}=\mathrm{1}+\sqrt{\mathrm{5}}\:,−\mathrm{3}+\sqrt{\mathrm{5}}\:……..\left({vii}\right) \\ $$$$\:\:\:\:\:\left({iv}\right):{x}^{\mathrm{2}} +\mathrm{1}=\mathrm{10}\pm\mathrm{4}\sqrt{\mathrm{5}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{2}} +{x}+\mathrm{1}=\left(\mathrm{10}\pm\mathrm{4}\sqrt{\mathrm{5}}\:\right)+\left(\pm\mathrm{2}+\sqrt{\mathrm{5}}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{12}+\mathrm{5}\sqrt{\mathrm{5}}\:,\mathrm{8}−\mathrm{3}\sqrt{\mathrm{5}}\:….\left({viii}\right) \\ $$$$\left({vii}\right)×\left({viii}\right): \\ $$$${x}^{\mathrm{3}} −\mathrm{1}=\mathrm{37}+\mathrm{17}\sqrt{\mathrm{5}}\:,−\mathrm{39}+\mathrm{17}\sqrt{\mathrm{5}}\:…..\left({ix}\right) \\ $$$${x}^{\mathrm{3}} +\mathrm{1}=\mathrm{39}+\mathrm{17}\sqrt{\mathrm{5}}\:,\:−\mathrm{37}+\mathrm{17}\sqrt{\mathrm{5}}\:….\left({x}\right) \\ $$$$\left({ix}\right)×\left({x}\right): \\ $$$${x}^{\mathrm{6}} −\mathrm{1}=\mathrm{2888}\pm\mathrm{1292}\sqrt{\mathrm{5}}\: \\ $$$$\blacktriangleright\frac{{x}\left({x}^{\mathrm{6}} \:−\:\mathrm{1}\right)}{{x}^{\mathrm{8}} \:−\:\mathrm{1}}=\frac{\left(\sqrt{\mathrm{5}}\:\pm\mathrm{2}\right)\left(\mathrm{2888}\pm\mathrm{1292}\sqrt{\mathrm{5}}\:\right)}{\mathrm{51840}\pm\mathrm{23184}\sqrt{\mathrm{5}}\:} \\ $$$$=\frac{\pm\mathrm{12236}+\mathrm{5472}\sqrt{\mathrm{5}}}{\mathrm{51840}\pm\mathrm{23184}\sqrt{\mathrm{5}}\:}.\frac{\mathrm{51840}\mp\mathrm{23184}\sqrt{\mathrm{5}}\:}{\mathrm{51840}\mp\mathrm{23184}\sqrt{\mathrm{5}}\:} \\ $$$$=\frac{−\mathrm{10944}\sqrt{\mathrm{5}}}{\left(\mathrm{51840}\right)^{\mathrm{2}} −\left(\mathrm{23184}^{\mathrm{2}} .\mathrm{5}\right)} \\ $$$$=\frac{−\mathrm{10944}\sqrt{\mathrm{5}}}{−\mathrm{103680}} \\ $$$$=\frac{\mathrm{19}\sqrt{\mathrm{5}}\:}{\mathrm{180}} \\ $$
Commented by abdullah_ff last updated on 25/Nov/21
$$\mathrm{Rasheed}\:\mathrm{sir},\:\mathrm{you}\:\mathrm{are}\:{really}\:\mathrm{great}.. \\ $$
Answered by Rasheed.Sindhi last updated on 23/Nov/21
$$\blacktriangleright\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} =\left(\mathrm{2}\sqrt{\mathrm{5}}\:\right)^{\mathrm{2}} \Rightarrow{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{20}−\mathrm{2} \\ $$$$\Rightarrow\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{\mathrm{2}} =\left(\mathrm{18}\right)^{\mathrm{2}} \Rightarrow{x}^{\mathrm{4}} +\frac{\mathrm{1}}{{x}^{\mathrm{4}} }=\mathrm{322}…\left({i}\right) \\ $$$$ \\ $$$$ \\ $$$$\Rightarrow\left({x}^{\mathrm{4}} +\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\right)^{\mathrm{2}} =\left(\mathrm{322}\right)^{\mathrm{2}} \Rightarrow{x}^{\mathrm{8}} +\frac{\mathrm{1}}{{x}^{\mathrm{8}} }=\mathrm{322}^{\mathrm{2}} −\mathrm{2}…\left({ii}\right) \\ $$$$ \\ $$$$ \\ $$$$\blacktriangleright\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{3}} =\left(\mathrm{2}\sqrt{\mathrm{5}}\:\right)^{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow{x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}} }−\mathrm{3}\left({x}+\frac{\mathrm{1}}{{x}}\right)=\mathrm{8}.\mathrm{5}.\sqrt{\mathrm{5}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\Rightarrow{x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}} }−\mathrm{3}\left(\mathrm{2}\sqrt{\mathrm{5}}\:\right)=\mathrm{8}.\mathrm{5}.\sqrt{\mathrm{5}} \\ $$$$\:\:\:\:\:\:\Rightarrow{x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}} }=\mathrm{46}\sqrt{\mathrm{5}}\:……..\left({iii}\right) \\ $$$$ \\ $$$$ \\ $$$$\left({i}\right)×\left({iii}\right): \\ $$$$\left({x}^{\mathrm{4}} +\frac{\mathrm{1}}{{x}^{\mathrm{4}} }\right)\left({x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)=\left(\mathrm{322}\right)\left(\mathrm{46}\sqrt{\mathrm{5}}\right) \\ $$$${x}^{\mathrm{7}} +\frac{\mathrm{1}}{{x}^{\mathrm{7}} }+{x}+\frac{\mathrm{1}}{{x}}=\left(\mathrm{322}\right)\left(\mathrm{46}\sqrt{\mathrm{5}}\right) \\ $$$${x}^{\mathrm{7}} +\frac{\mathrm{1}}{{x}^{\mathrm{7}} }+\mathrm{2}\sqrt{\mathrm{5}}=\left(\mathrm{322}\right)\left(\mathrm{46}\sqrt{\mathrm{5}}\right) \\ $$$${x}^{\mathrm{7}} +\frac{\mathrm{1}}{{x}^{\mathrm{7}} }=\left(\mathrm{322}\right)\left(\mathrm{46}\sqrt{\mathrm{5}}\right)−\mathrm{2}\sqrt{\mathrm{5}} \\ $$$$ \\ $$$$ \\ $$$$\blacktriangleright\frac{{x}\left({x}^{\mathrm{6}} \:−\:\mathrm{1}\right)}{{x}^{\mathrm{8}} \:−\:\mathrm{1}}=\frac{{x}^{\mathrm{7}} }{{x}^{\mathrm{8}} −\mathrm{1}}−\frac{{x}}{{x}^{\mathrm{8}} −\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\frac{{x}^{\mathrm{8}} −\mathrm{1}}{{x}^{\mathrm{7}} }}−\frac{\mathrm{1}}{\frac{{x}^{\mathrm{8}} −\mathrm{1}}{{x}}}=\frac{\mathrm{1}}{{x}−\frac{\mathrm{1}}{{x}^{\mathrm{7}} }}−\frac{\mathrm{1}}{{x}^{\mathrm{7}} −\frac{\mathrm{1}}{{x}}} \\ $$$$=\frac{\left({x}^{\mathrm{7}} −\frac{\mathrm{1}}{{x}}\right)−\left({x}−\frac{\mathrm{1}}{{x}^{\mathrm{7}} }\right)}{\left({x}−\frac{\mathrm{1}}{{x}^{\mathrm{7}} }\right)\left({x}^{\mathrm{7}} −\frac{\mathrm{1}}{{x}}\right)} \\ $$$$=\frac{\left({x}^{\mathrm{7}} +\frac{\mathrm{1}}{{x}^{\mathrm{7}} }\right)−\left({x}+\frac{\mathrm{1}}{{x}}\right)}{\left({x}^{\mathrm{8}} +\frac{\mathrm{1}}{{x}^{\mathrm{8}} }\right)−\mathrm{2}} \\ $$$$=\frac{\left(\right)−\left({x}+\frac{\mathrm{1}}{{x}}\right)}{\left({x}^{\mathrm{8}} +\frac{\mathrm{1}}{{x}^{\mathrm{8}} }\right)−\mathrm{2}} \\ $$
Commented by abdullah_ff last updated on 23/Nov/21
$${E}^{\mathcal{X}} \mathcal{C}\boldsymbol{\mathrm{e}}{lle}\boldsymbol{{nt}}\:\mathbb{S}\mathrm{i}\mathbb{R} \\ $$
Answered by som(math1967) last updated on 23/Nov/21
$$\frac{{x}\left({x}^{\mathrm{6}} −\mathrm{1}\right)}{{x}^{\mathrm{8}} −\mathrm{1}} \\ $$$$=\frac{\frac{{x}\left({x}^{\mathrm{6}} −\mathrm{1}\right)}{{x}^{\mathrm{4}} }}{\frac{{x}^{\mathrm{8}} −\mathrm{1}}{{x}^{\mathrm{4}} }} \\ $$$$=\frac{{x}^{\mathrm{3}} −\frac{\mathrm{1}}{{x}^{\mathrm{3}} }}{{x}^{\mathrm{4}} −\frac{\mathrm{1}}{{x}^{\mathrm{4}} }} \\ $$$$=\frac{\cancel{\left({x}−\frac{\mathrm{1}}{{x}}\right)}\left({x}^{\mathrm{2}} +\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)}{\cancel{\left({x}−\frac{\mathrm{1}}{{x}}\right)}\left({x}+\frac{\mathrm{1}}{{x}}\right)\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)}\:\left[\left({x}−\frac{\mathrm{1}}{{x}}\right)\neq\mathrm{0}\right] \\ $$$$=\frac{\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} −\mathrm{2}.{x}.\frac{\mathrm{1}}{{x}}+\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{5}}\left\{\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} −\mathrm{2}.{x}.\frac{\mathrm{1}}{{x}}\right\}} \\ $$$$=\frac{\mathrm{20}−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{5}}\left(\mathrm{20}−\mathrm{2}\right)} \\ $$$$=\frac{\mathrm{19}}{\mathrm{36}\sqrt{\mathrm{5}}}=\frac{\mathrm{19}\sqrt{\mathrm{5}}}{\mathrm{180}} \\ $$
Commented by abdullah_ff last updated on 23/Nov/21
$$\mathrm{this}\:\mathrm{is}\:\mathrm{great}.\:\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}.. \\ $$
Commented by Rasheed.Sindhi last updated on 23/Nov/21
$$\mathcal{E}{fficient}! \\ $$
Answered by Tokugami last updated on 23/Nov/21
$${x}+\frac{\mathrm{1}}{{x}}=\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}}=\mathrm{2}\sqrt{\mathrm{5}} \\ $$$$\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} =\left(\mathrm{2}\sqrt{\mathrm{5}}\right)^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +\mathrm{2}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{20} \\ $$$$\frac{\mathrm{1}+{x}^{\mathrm{4}} }{{x}^{\mathrm{2}} }=\mathrm{18} \\ $$$$\frac{{x}\cancel{\left({x}^{\mathrm{2}} −\mathrm{1}\right)}\left({x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}\right)}{\cancel{\left({x}^{\mathrm{2}} −\mathrm{1}\right)}\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{4}} +\mathrm{1}\right)}=\left(\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{1}}\right)\left(\frac{{x}^{\mathrm{4}} +\mathrm{1}+{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} +\mathrm{1}}\right)=\left(\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{1}}\right)\left(\mathrm{1}+\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} +\mathrm{1}}\right) \\ $$$$=\left(\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{5}}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{18}}\right) \\ $$$$=\frac{\mathrm{19}}{\mathrm{36}\sqrt{\mathrm{5}}} \\ $$$$ \\ $$
Commented by abdullah_ff last updated on 23/Nov/21
$$\boldsymbol{{thanks}}\:\mathrm{for}\:\mathrm{your}\:\boldsymbol{{kind}}\:\mathrm{help}\:\boldsymbol{{sir}} \\ $$
Commented by Rasheed.Sindhi last updated on 23/Nov/21
$$\mathbb{E}\mathrm{fficient}! \\ $$