Menu Close

If-x-1-x-2-x-0-prove-that-x-n-1-x-n-2-n-Z-




Question Number 108516 by Rasheed.Sindhi last updated on 17/Aug/20
If x+(1/x)=2(x≠0), prove that       x^n +(1/x^n )=2  ∀ n∈ Z
Ifx+1x=2(x0),provethatxn+1xn=2nZ
Commented by mr W last updated on 17/Aug/20
if x>0:  x+(1/x)≥2(√(x×(1/x)))=2  = only for x=(1/x)=1    if x<0:  x+(1/x)=−(−x+(1/(−x)))≤−2  ⇒no solution for x+(1/x)=2    ⇒only solution for x+(1/x)=2 is  x=1    ⇒x^n +(1/x^n )=1+1=2
ifx>0:x+1x2x×1x=2=onlyforx=1x=1ifx<0:x+1x=(x+1x)2nosolutionforx+1x=2onlysolutionforx+1x=2isx=1xn+1xn=1+1=2
Commented by Rasheed.Sindhi last updated on 17/Aug/20
e^x cellent!
excellent!
Commented by udaythool last updated on 17/Aug/20
By induction it follows...
Byinductionitfollows
Commented by Rasheed.Sindhi last updated on 17/Aug/20
Thanks sir waiting for proof by  induction....
Thankssirwaitingforproofbyinduction.
Commented by udaythool last updated on 17/Aug/20
Let n=0,1,...  Induction statment:  P_n : x^n +(1/x^n )=2  For n=0 and 1, P_n  is true  Induction hypothesis:  Let P_n  is true for all n=0,..., k  ∴(x^(k+1) +(1/x^(k+1) ))=(x+(1/x))(x^k +(1/x^k ))−2=2x2−2=2  i.e. P_k ⇒P_(k+1)   Thus by PI P_n  is true for all n∈Z^+   If n∈Z^− ⇒n=−m for m=∣n∣∈Z^+   ∴ x^n +(1/x^n )=x^(−m) +(1/x^(−m) )=x^m +(1/x^m )=2  And hence P_n  is true ∀n∈Z  etc...
Letn=0,1,Inductionstatment:Pn:xn+1xn=2Forn=0and1,PnistrueInductionhypothesis:LetPnistrueforalln=0,,k(xk+1+1xk+1)=(x+1x)(xk+1xk)2=2×22=2i.e.PkPk+1ThusbyPIPnistrueforallnZ+IfnZn=mform=∣n∣∈Z+xn+1xn=xm+1xm=xm+1xm=2AndhencePnistruenZetc
Commented by Rasheed.Sindhi last updated on 18/Aug/20
Nice sir!   The line below needs some  detail: Thanks.  ∴(x^(k+1) +(1/x^(k+1) ))=(x+(1/x))(x^k +(1/x^k ))−2=2x2−2=2
Nicesir!Thelinebelowneedssomedetail:Thanks.(xk+1+1xk+1)=(x+1x)(xk+1xk)2=2×22=2
Commented by udaythool last updated on 13/Sep/20
Actually;  (x+(1/x))(x^k +(1/x^k ))=(x^(k+1) +(1/x^(k+1) ))+(x^(k−1) +(1/x^(k−1) ))  ⇒(x^(k+1) +(1/x^(k+1) ))=(x+(1/x))(x^k +(1/x^k ))−(x^(k−1) +(1/x^(k−1) ))  we have assumed (induction  hypothesis) p_n  is true for n=k  i.e. p_n =2 for n=1,2,…,k  Thus (x^(k+1) +(1/x^(k+1) ))=2x2−2=2
Actually;(x+1x)(xk+1xk)=(xk+1+1xk+1)+(xk1+1xk1)(xk+1+1xk+1)=(x+1x)(xk+1xk)(xk1+1xk1)wehaveassumed(inductionhypothesis)pnistrueforn=ki.e.pn=2forn=1,2,,kThus(xk+1+1xk+1)=2×22=2
Answered by floor(10²Eta[1]) last updated on 17/Aug/20
x^2 −2x+1=(x−1)^2 =0⇒x=1  ⇒x^n =1∴x^n +(1/x^n )=2=1+(1/1)
x22x+1=(x1)2=0x=1xn=1xn+1xn=2=1+11
Commented by Rasheed.Sindhi last updated on 17/Aug/20
θαnX sir!
θαnXsir!
Answered by mathmax by abdo last updated on 17/Aug/20
x+(1/x) =2 ⇒x^2 +1 =2x ⇒x^2 −2x+1 =0 ⇒(x−1)^2  =0 ⇒x=1 ⇒  ∀n    we hsve   x^n  +(1/x^n ) =2
x+1x=2x2+1=2xx22x+1=0(x1)2=0x=1nwehsvexn+1xn=2
Commented by Rasheed.Sindhi last updated on 18/Aug/20
Thanx sir
Thanxsir

Leave a Reply

Your email address will not be published. Required fields are marked *