Menu Close

if-x-1-x-3-find-x-24-x-18-x-6-1-




Question Number 60905 by necx1 last updated on 27/May/19
if x+(1/x)=(√3).find  x^(24) +x^(18) +x^6 +1
ifx+1x=3.findx24+x18+x6+1
Answered by ajfour last updated on 27/May/19
E=x^(24) +x^(18) +x^6 +1     x^2 −(√3)x+1=0     x=(((√3)±i)/2) = e^(±i (π/6))   E= 1−1−1+1=0 .
E=x24+x18+x6+1x23x+1=0x=3±i2=e±iπ6E=111+1=0.
Commented by necx1 last updated on 27/May/19
thank you sir
thankyousir
Answered by Rasheed.Sindhi last updated on 27/May/19
x+(1/x)=(√3)    (Given)  (x+(1/x))^2 =((√3)  )^2     x^2 +(1/x^2 )=3−2=1  (x^2 +(1/x^2 ))^3 =(1)^3 =1  (x^2 )^3 +(1/((x^2 )^3 ))+3.x^2 .(1/x^2 )(x^2 +(1/x^2 ))=1  x^6 +(1/x^6 )=1−3=−2........................A  (x^6 +(1/x^6 ))^2 =(−2)^2 =4  x^(12) +(1/x^(12) )=4−2=2......................B   ⇒x^(24) −2x^(12) +1=0  ⇒(x^(12) −1)^2 =0⇒x^(12) =1...........C  Now,  Let P=x^(24) +x^(18) +x^6 +1  P=x^(12) (x^(12) +(1/x^(12) )+x^6 +(1/x^6 ))      =(1)(2−2)=0
x+1x=3(Given)(x+1x)2=(3)2x2+1x2=32=1(x2+1x2)3=(1)3=1(x2)3+1(x2)3+3.x2.1x2(x2+1x2)=1x6+1x6=13=2A(x6+1x6)2=(2)2=4x12+1x12=42=2.Bx242x12+1=0(x121)2=0x12=1..CNow,LetP=x24+x18+x6+1P=x12(x12+1x12+x6+1x6)=(1)(22)=0
Commented by necx1 last updated on 27/May/19
too many methods for approaching the  problem.I′m so grateful.
toomanymethodsforapproachingtheproblem.Imsograteful.
Answered by math1967 last updated on 27/May/19
x+(1/x)=(√3) ⇒x^3 +(1/x^3 )=0 ((x^6 +1)/x^3 )=0  ∴x^6 +1=0  ∴x^(24) +x^(18) +x^6 +1=x^(18) (x^6 +1)+x^6 +1                                           =x^(18) ×0+0=0ans
x+1x=3x3+1x3=0x6+1x3=0x6+1=0x24+x18+x6+1=x18(x6+1)+x6+1=x18×0+0=0ans
Commented by Rasheed.Sindhi last updated on 27/May/19
More efficient approach than mine!
Moreefficientapproachthanmine!
Commented by math1967 last updated on 27/May/19
Thank you sir
Thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *