Menu Close

If-x-1-x-3-find-x-5-1-x-5-




Question Number 30092 by math1967 last updated on 16/Feb/18
If x+(1/x)=3 find x^5 +(1/x^5 )
$${If}\:{x}+\frac{\mathrm{1}}{{x}}=\mathrm{3}\:{find}\:{x}^{\mathrm{5}} +\frac{\mathrm{1}}{{x}^{\mathrm{5}} } \\ $$
Answered by math1967 last updated on 16/Feb/18
x+(1/x)=3 ∴x^2 +(1/x^2 )=7 and x^3 +(1/x^3 )=18  now (x^2 +(1/x^2 ))(x^3 +(1/x^3 ))=7×18  x^5 +(1/x^5 )+x+(1/x)=126  x^5 +(1/x^5 )=123
$${x}+\frac{\mathrm{1}}{{x}}=\mathrm{3}\:\therefore{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{7}\:{and}\:{x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}} }=\mathrm{18} \\ $$$${now}\:\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\left({x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)=\mathrm{7}×\mathrm{18} \\ $$$${x}^{\mathrm{5}} +\frac{\mathrm{1}}{{x}^{\mathrm{5}} }+{x}+\frac{\mathrm{1}}{{x}}=\mathrm{126} \\ $$$${x}^{\mathrm{5}} +\frac{\mathrm{1}}{{x}^{\mathrm{5}} }=\mathrm{123} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *