Menu Close

If-x-1-x-4-what-the-value-of-x-6-1-x-3-




Question Number 90716 by jagoll last updated on 25/Apr/20
If x + (1/x) = 4 , what the   value of ((x^6 −1)/x^3 )
Ifx+1x=4,whatthevalueofx61x3
Commented by john santu last updated on 25/Apr/20
x^2 +(1/x^2 ) + 2 = 16 ⇒x^2 +(1/x^2 ) = 14  ((x^6 −1)/x^3 ) = x^3 −(1/x^3 ) = (x−(1/x))(x^2 +(1/x^2 )+1)  x^2 +1 = 4x ⇒x^2 −4x+1 = 0  x = ((4 ± 2(√3))/2) = 2 ± (√3)  (1) x = 2 + (√( 3)) ⇒(1/x) = 2−(√3)  ⇒ x−(1/x) = 2+(√3) − (2−(√3)) = 2(√3)   (2) x = 2−(√3) ⇒(1/x) = 2+(√3)  ⇒x−(1/x) = 2−(√3) −(2+(√3)) = −2(√3)  ∴ ((x^6 −1)/x^3 ) =  { ((2(√3) (15) = 30(√3))),((−2(√3) (15) = −30(√3) )) :}
x2+1x2+2=16x2+1x2=14x61x3=x31x3=(x1x)(x2+1x2+1)x2+1=4xx24x+1=0x=4±232=2±3(1)x=2+31x=23x1x=2+3(23)=23(2)x=231x=2+3x1x=23(2+3)=23x61x3={23(15)=30323(15)=303

Leave a Reply

Your email address will not be published. Required fields are marked *