Menu Close

If-x-1-x-7-thenthevalueofx-4-1-x-4-is-




Question Number 43226 by veerendravyas1974@gmail.com last updated on 08/Sep/18
  If(x−(1/x)=7)thenthevalueofx^4 +(1/x^4 )is?
$$ \\ $$$${If}\left({x}−\frac{\mathrm{1}}{{x}}=\mathrm{7}\right){thenthevalueofx}^{\mathrm{4}} +\frac{\mathrm{1}}{{x}^{\mathrm{4}} }{is}? \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 08/Sep/18
x^2 +(1/x^2 )=(x−(1/x))^2 +2.x.(1/x)=51  x^4 +(1/x^4 )=(x^2 +(1/x^2 ))^2 −2.x^2 .(1/x^2 )    =(51)^2 −2  =2601−2  =2599
$${x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\left({x}−\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} +\mathrm{2}.{x}.\frac{\mathrm{1}}{{x}}=\mathrm{51} \\ $$$${x}^{\mathrm{4}} +\frac{\mathrm{1}}{{x}^{\mathrm{4}} }=\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{\mathrm{2}} −\mathrm{2}.{x}^{\mathrm{2}} .\frac{\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$$$\:\:=\left(\mathrm{51}\right)^{\mathrm{2}} −\mathrm{2} \\ $$$$=\mathrm{2601}−\mathrm{2} \\ $$$$=\mathrm{2599} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *