Question Number 78931 by mr W last updated on 21/Jan/20
$${if}\:{x}+\frac{\mathrm{1}}{{x}}={a} \\ $$$${find}\:{x}^{{n}} +\frac{\mathrm{1}}{{x}^{{n}} }=? \\ $$
Commented by mathmax by abdo last updated on 22/Jan/20
$${x}+\frac{\mathrm{1}}{{x}}={a}\:\Rightarrow{x}^{\mathrm{2}} +\mathrm{1}={ax}\:\:\Rightarrow{x}^{\mathrm{2}} −{ax}\:+\mathrm{1}\:=\mathrm{0} \\ $$$$\Delta={a}^{\mathrm{2}} −\mathrm{4}\:\Rightarrow{x}_{\mathrm{1}} =\frac{{a}+\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}\:{and}\:{x}_{\mathrm{2}} =\frac{{a}−\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}} \\ $$$${case}\:\mathrm{1}\:{x}={x}_{\mathrm{1}} \:\Rightarrow{x}^{{n}} +\frac{\mathrm{1}}{{x}^{{n}} }\:=\left(\frac{{a}+\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}\right)^{{n}} \:+\left(\frac{\mathrm{2}}{{a}+\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}}\right)^{{n}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left({a}+\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}\right)^{{n}} \:+\mathrm{2}^{{n}} \left(\frac{{a}−\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{4}}\right)^{{n}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left({a}+\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}\right)^{{n}} \:+\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left({a}−\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}\right)^{{n}} \\ $$$${case}\:\mathrm{2}\:\:{x}\:={x}_{\mathrm{2}} \:\:\:{we}\:{get}\:{the}\:{same}\:{value}\:{due}\:{to}\:{x}_{\mathrm{2}} ={conj}\left({x}_{\mathrm{1}} \right) \\ $$
Commented by mr W last updated on 22/Jan/20
$${thank}\:{you}\:{sir}! \\ $$$${U}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left\{\left({a}+\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}\right)^{{n}} +\left({a}−\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}\right)^{{n}} \right\} \\ $$$${can}\:{the}\:{term}\:\left({a}+\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}\right)^{{n}} +\left({a}−\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}\right)^{{n}} \\ $$$${be}\:{simplified}\:{more}? \\ $$$${if}\:{a}\in\mathbb{Q},\:{is}\:{slso}\:{U}_{{n}} \in\mathbb{Q}? \\ $$
Commented by mind is power last updated on 22/Jan/20
$${yeah}\:{a}\in\mathbb{Q}\:,{Un}\in\mathbb{Q} \\ $$$${because}\: \\ $$$${U}_{{n}+\mathrm{1}} ={aU}_{{n}} −{U}_{{n}−\mathrm{1}} …. \\ $$$${U}_{\mathrm{0}} =\mathrm{2},{U}_{\mathrm{1}} \:={a}\in{Q}\:{By}\:{indiction} \\ $$$$\forall{n}\in\mathbb{N}\:\:,{U}_{{n}} \in\mathbb{Q}\:{if}\:{a}\in\mathbb{Z}\:\:{U}_{{n}} \in\mathbb{Z}\:{also} \\ $$
Commented by mr W last updated on 22/Jan/20
$${thanks}\:{sir}! \\ $$$${i}\:{think}\:{so}\:{too}.\:{that}\:{means}\:{in}\:{final} \\ $$$${U}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left\{\left({a}+\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}\right)^{{n}} +\left({a}−\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}\right)^{{n}} \right\} \\ $$$${the}\:{term}\:\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}\:{should}\:{disappear}. \\ $$$${how}\:{can}\:{the}\:{term}\:\left({a}+\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}\right)^{{n}} +\left({a}−\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}\right)^{{n}} \\ $$$${be}\:{simplified}\:{such}\:{that}\:\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}\:{disappears}? \\ $$
Commented by mind is power last updated on 22/Jan/20
$${yeah} \\ $$$$\left({a}−{b}\right)^{{n}} +\left({a}+{b}\right)^{{n}} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{n}} ^{{k}} \left\{{a}^{{n}−{k}} \left(−{b}\right)^{{k}} +{a}^{{n}−{k}} {b}^{{k}} \right\} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{E}\left(\frac{{n}−\mathrm{1}}{\mathrm{2}}\right)} {\sum}}{C}_{{n}} ^{\mathrm{2}{k}+\mathrm{1}} \left\{−{a}^{{n}−\left(\mathrm{2}{k}+\mathrm{1}\right)} {b}^{\mathrm{2}{k}+\mathrm{1}} +{a}^{{n}−\left(\mathrm{2}{k}+\mathrm{1}\right)} {b}^{\mathrm{2}{k}+\mathrm{1}} \right\}+\underset{{k}=\mathrm{0}} {\overset{{E}\left(\frac{{n}}{\mathrm{2}}\right)} {\sum}}{C}_{{n}} ^{\mathrm{2}{k}} \left\{{a}^{{n}−\mathrm{2}{k}} {b}^{\mathrm{2}{k}} +{a}^{{n}−\mathrm{2}{k}} {b}^{\mathrm{2}{k}} \right\} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{{E}\left(\frac{{n}}{\mathrm{2}}\right)} {\sum}}\mathrm{2}{C}_{{n}} ^{\mathrm{2}{k}} {a}^{{n}−\mathrm{2}{k}} {b}^{\mathrm{2}{k}} \\ $$$$\left({a}+\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}\right)^{{n}} +\left({a}−\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}\right)^{{n}} ,{b}=\sqrt{{a}^{\mathrm{2}} −\mathrm{4}} \\ $$$${we}\:{Get} \\ $$$$\mathrm{2}\underset{{k}=\mathrm{0}} {\overset{{E}\left(\frac{{n}}{\mathrm{2}}\right)} {\sum}}{C}_{{n}} ^{\mathrm{2}{k}} {a}^{{n}−\mathrm{2}{k}} \left(\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}\right)^{\mathrm{2}{k}} \:\:\:{ifa}\geqslant\mathrm{2} \\ $$$$=\mathrm{2}\underset{{k}=\mathrm{0}} {\overset{{E}\left(\frac{{n}}{\mathrm{2}}\right)} {\sum}}{C}_{{n}} ^{\mathrm{2}{k}} {a}^{{n}−\mathrm{2}{k}} \left({a}^{\mathrm{2}} −\mathrm{4}\right)^{{k}} \\ $$
Commented by mr W last updated on 22/Jan/20
$${if}\:{a}^{\mathrm{2}} −\mathrm{4}<\mathrm{0},\:{i}.{e}.\:−\mathrm{2}<{a}<\mathrm{2}: \\ $$$${a}\pm\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}={a}\pm\sqrt{\mathrm{4}−{a}^{\mathrm{2}} }{i}=\mathrm{2}\left(\frac{{a}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{4}−{a}^{\mathrm{2}} }}{\mathrm{2}}{i}\right) \\ $$$$=\mathrm{2}\left[\mathrm{cos}\:\left(\pm\varphi\right)+{i}\:\mathrm{sin}\:\left(\pm\varphi\right)\right]\:{with}\:\varphi=\mathrm{cos}^{−\mathrm{1}} \frac{{a}}{\mathrm{2}} \\ $$$${U}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left\{\left({a}+\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}\right)^{{n}} +\left({a}−\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}\right)^{{n}} \right\} \\ $$$$=\mathrm{2}\:\mathrm{cos}\:\left({n}\varphi\right) \\ $$$$=\mathrm{2}\:\mathrm{cos}\:\left({n}\:\mathrm{cos}^{−\mathrm{1}} \frac{{a}}{\mathrm{2}}\right) \\ $$
Commented by mind is power last updated on 22/Jan/20
$${nice}\:{sir} \\ $$
Commented by mr W last updated on 22/Jan/20
$${i}'{m}\:{wondering}\:{that}\:{U}_{{n}} {is}\:{always}\:<\mathrm{2}\:{if} \\ $$$${a}<\mathrm{2}\:{and}\:\mathrm{cos}\:\left({n}\:\mathrm{cos}^{−\mathrm{1}} \frac{{a}}{\mathrm{2}}\right)\:\in\:{Q}\:{if}\:{a}\in{Q}. \\ $$
Answered by mind is power last updated on 21/Jan/20
$${let}\:{U}_{{n}} ={x}^{{n}} +\frac{\mathrm{1}}{{x}^{{n}} } \\ $$$${U}_{\mathrm{0}} =\mathrm{2},{U}_{\mathrm{1}} ={a} \\ $$$${U}_{{n}+\mathrm{1}} =\left({x}+\frac{\mathrm{1}}{{x}}\right)\left({x}^{{n}} +\frac{\mathrm{1}}{{x}^{{n}} }\right)−{x}^{{n}−\mathrm{1}} +\frac{\mathrm{1}}{{x}^{{n}−\mathrm{1}} } \\ $$$${U}_{{n}+\mathrm{1}} ={aU}_{{n}} +{U}_{{n}−\mathrm{1}} \\ $$$$\Rightarrow{U}_{{n}+\mathrm{1}} −{aU}_{{n}} −{U}_{{n}−\mathrm{1}} =\mathrm{0} \\ $$$${X}^{\mathrm{2}} −{aX}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{X}_{\mathrm{1}} =\frac{{a}−\sqrt{{a}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}},{X}_{\mathrm{2}} ^{} =\frac{{a}+\sqrt{{a}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}} \\ $$$${U}_{{n}} ={c}\left({X}_{\mathrm{1}} \right)^{{n}} +{b}\left({X}_{\mathrm{2}} \right)^{{n}} \\ $$$${c}+{b}=\mathrm{2} \\ $$$${cX}_{\mathrm{1}} +{bX}_{\mathrm{2}} ={a} \\ $$$$\frac{{a}}{\mathrm{2}}\left({c}+{b}\right)+\frac{\sqrt{{a}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}}\left({b}−{c}\right)={a} \\ $$$$\Rightarrow{b}={c} \\ $$$$\Rightarrow{U}_{{n}} =\left(\frac{{a}−\sqrt{{a}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}}\right)^{{n}} +\left(\frac{{a}+\sqrt{{a}^{\mathrm{2}} +\mathrm{4}}}{\mathrm{2}}\right)^{{n}} \\ $$
Commented by mr W last updated on 21/Jan/20
$${thanks}\:{alot}\:{sir}! \\ $$$${please}\:{check}\:{typos}: \\ $$$${U}_{{n}+\mathrm{1}} ={aU}_{{n}} −{U}_{{n}−\mathrm{1}} \\ $$$$\Rightarrow{U}_{{n}} =\left(\frac{{a}−\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}\right)^{{n}} +\left(\frac{{a}+\sqrt{{a}^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}}\right)^{{n}} \\ $$
Commented by mind is power last updated on 21/Jan/20
$${yeah}\:{Sorry}\:{Sir}\:{i}\:{mack}\:{this}\:{Typ}\:{of}\:{error}\: \\ $$