Menu Close

if-x-1-x-Golden-ratio-x-2000-1-x-2000-




Question Number 190360 by mnjuly1970 last updated on 01/Apr/23
  if   x+ (1/x) = ϕ (  Golden ratio)       ⇒   x^( 2000) + (1/x^( 2000) )=?
$$ \\ $$$${if}\:\:\:{x}+\:\frac{\mathrm{1}}{{x}}\:=\:\varphi\:\left(\:\:{Golden}\:{ratio}\right) \\ $$$$\:\:\:\:\:\Rightarrow\:\:\:{x}^{\:\mathrm{2000}} +\:\frac{\mathrm{1}}{{x}^{\:\mathrm{2000}} }=? \\ $$$$ \\ $$$$ \\ $$
Answered by Frix last updated on 01/Apr/23
x=e^(±i(π/5))   x^(2000) =e^(±400πi) =1  1+1=2
$${x}=\mathrm{e}^{\pm\mathrm{i}\frac{\pi}{\mathrm{5}}} \\ $$$${x}^{\mathrm{2000}} =\mathrm{e}^{\pm\mathrm{400}\pi\mathrm{i}} =\mathrm{1} \\ $$$$\mathrm{1}+\mathrm{1}=\mathrm{2} \\ $$
Commented by mnjuly1970 last updated on 02/Apr/23
please solution
$${please}\:{solution} \\ $$
Answered by BaliramKumar last updated on 02/Apr/23
x + (1/x) = (((√5) + 1)/2)       ......(i)  x^2  + (1/x^2 ) = (((√5) − 1)/2)      ........(ii)  x^3  + (1/x^3 ) = ((1 −(√5))/2)    ..........(iii)  (ii)×(iii)  (x^2  + (1/x^2 ))(x^3  + (1/x^3 )) = − ((((√5) − 1)/2))^2   x^5  + (1/x^5 ) + x + (1/x) = (((√5) − 3)/2)  x^5  + (1/x^5 )  = (((√5) − 3)/2) −(x + (1/x))  x^5  + (1/x^5 )  = (((√5) − 3)/2) −((((√5) + 1)/2)) = − 2  ∴ x^5  = − 1    x^(2000)  + (1/x^(2000) ) = (x^5 )^(400)  + (1/((x^5 )^(400) ))  x^(2000)  + (1/x^(2000) ) = (−1)^(400)  + (1/((−1)^(400) )) = 2
$${x}\:+\:\frac{\mathrm{1}}{{x}}\:=\:\frac{\sqrt{\mathrm{5}}\:+\:\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:\:……\left({i}\right) \\ $$$${x}^{\mathrm{2}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:=\:\frac{\sqrt{\mathrm{5}}\:−\:\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:……..\left({ii}\right) \\ $$$${x}^{\mathrm{3}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\:=\:\frac{\mathrm{1}\:−\sqrt{\mathrm{5}}}{\mathrm{2}}\:\:\:\:……….\left({iii}\right) \\ $$$$\left({ii}\right)×\left({iii}\right) \\ $$$$\left({x}^{\mathrm{2}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)\left({x}^{\mathrm{3}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)\:=\:−\:\left(\frac{\sqrt{\mathrm{5}}\:−\:\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${x}^{\mathrm{5}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{5}} }\:+\:{x}\:+\:\frac{\mathrm{1}}{{x}}\:=\:\frac{\sqrt{\mathrm{5}}\:−\:\mathrm{3}}{\mathrm{2}} \\ $$$${x}^{\mathrm{5}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{5}} }\:\:=\:\frac{\sqrt{\mathrm{5}}\:−\:\mathrm{3}}{\mathrm{2}}\:−\left({x}\:+\:\frac{\mathrm{1}}{{x}}\right) \\ $$$${x}^{\mathrm{5}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{5}} }\:\:=\:\frac{\sqrt{\mathrm{5}}\:−\:\mathrm{3}}{\mathrm{2}}\:−\left(\frac{\sqrt{\mathrm{5}}\:+\:\mathrm{1}}{\mathrm{2}}\right)\:=\:−\:\mathrm{2} \\ $$$$\therefore\:{x}^{\mathrm{5}} \:=\:−\:\mathrm{1} \\ $$$$ \\ $$$${x}^{\mathrm{2000}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2000}} }\:=\:\left({x}^{\mathrm{5}} \right)^{\mathrm{400}} \:+\:\frac{\mathrm{1}}{\left({x}^{\mathrm{5}} \right)^{\mathrm{400}} } \\ $$$${x}^{\mathrm{2000}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2000}} }\:=\:\left(−\mathrm{1}\right)^{\mathrm{400}} \:+\:\frac{\mathrm{1}}{\left(−\mathrm{1}\right)^{\mathrm{400}} }\:=\:\mathrm{2} \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 02/Apr/23
thx sir
$${thx}\:{sir} \\ $$
Answered by BaliramKumar last updated on 02/Apr/23
x + (1/x) = ϕ  x + (1/x) = (((√5) + 1)/2)                                   [ϕ = (((√5) + 1)/2)]  x + (1/x) = 2cos((π/5))                    [cos((π/5)) = (((√5) + 1)/4)]  square both side  x^2  + (1/x^2 ) + 2 = 4cos^2 ((π/5))  x^2  + (1/x^2 )  = 4cos^2 ((π/5)) − 2 = 2[2cos^2 ((π/5))− 1]  x^2  + (1/x^2 )  = 2cos2((π/5))  x^n  + (1/x^n ) = 2cos(((nπ)/5))  x^(2000)  + (1/x^(2000) ) = 2cos(((2000π)/5)) = 2cos(400π)  x^(2000)  + (1/x^(2000) ) =  2×1 = 2                   [cos2nπ = 1]      x^(2023)  + (1/x^(2023) ) = 2cos(((2023π)/5))   ⇒  2cos(404π + ((3π)/5)) ⇒ 2cos(((3π)/5))  ⇒ 2cos(π − ((2π)/5)) ⇒ −2cos(((2π)/5))  ⇒ −2cos72° = −2sin18° = −2((((√5) − 1)/4))  ⇒ − ((((√5) − 1)/2))
$${x}\:+\:\frac{\mathrm{1}}{{x}}\:=\:\varphi \\ $$$${x}\:+\:\frac{\mathrm{1}}{{x}}\:=\:\frac{\sqrt{\mathrm{5}}\:+\:\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\varphi\:=\:\frac{\sqrt{\mathrm{5}}\:+\:\mathrm{1}}{\mathrm{2}}\right] \\ $$$${x}\:+\:\frac{\mathrm{1}}{{x}}\:=\:\mathrm{2}{cos}\left(\frac{\pi}{\mathrm{5}}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[{cos}\left(\frac{\pi}{\mathrm{5}}\right)\:=\:\frac{\sqrt{\mathrm{5}}\:+\:\mathrm{1}}{\mathrm{4}}\right] \\ $$$${square}\:{both}\:{side} \\ $$$${x}^{\mathrm{2}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:+\:\mathrm{2}\:=\:\mathrm{4}{cos}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{5}}\right) \\ $$$${x}^{\mathrm{2}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:\:=\:\mathrm{4}{cos}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{5}}\right)\:−\:\mathrm{2}\:=\:\mathrm{2}\left[\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{5}}\right)−\:\mathrm{1}\right] \\ $$$${x}^{\mathrm{2}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:\:=\:\mathrm{2}{cos}\mathrm{2}\left(\frac{\pi}{\mathrm{5}}\right) \\ $$$${x}^{{n}} \:+\:\frac{\mathrm{1}}{{x}^{{n}} }\:=\:\mathrm{2}{cos}\left(\frac{{n}\pi}{\mathrm{5}}\right) \\ $$$${x}^{\mathrm{2000}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2000}} }\:=\:\mathrm{2}{cos}\left(\frac{\mathrm{2000}\pi}{\mathrm{5}}\right)\:=\:\mathrm{2}{cos}\left(\mathrm{400}\pi\right) \\ $$$${x}^{\mathrm{2000}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2000}} }\:=\:\:\mathrm{2}×\mathrm{1}\:=\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[{cos}\mathrm{2}{n}\pi\:=\:\mathrm{1}\right] \\ $$$$ \\ $$$$ \\ $$$${x}^{\mathrm{2023}} \:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2023}} }\:=\:\mathrm{2}{cos}\left(\frac{\mathrm{2023}\pi}{\mathrm{5}}\right)\: \\ $$$$\Rightarrow\:\:\mathrm{2}{cos}\left(\mathrm{404}\pi\:+\:\frac{\mathrm{3}\pi}{\mathrm{5}}\right)\:\Rightarrow\:\mathrm{2}{cos}\left(\frac{\mathrm{3}\pi}{\mathrm{5}}\right) \\ $$$$\Rightarrow\:\mathrm{2}{cos}\left(\pi\:−\:\frac{\mathrm{2}\pi}{\mathrm{5}}\right)\:\Rightarrow\:−\mathrm{2}{cos}\left(\frac{\mathrm{2}\pi}{\mathrm{5}}\right) \\ $$$$\Rightarrow\:−\mathrm{2}{cos}\mathrm{72}°\:=\:−\mathrm{2}{sin}\mathrm{18}°\:=\:−\mathrm{2}\left(\frac{\sqrt{\mathrm{5}}\:−\:\mathrm{1}}{\mathrm{4}}\right) \\ $$$$\Rightarrow\:−\:\left(\frac{\sqrt{\mathrm{5}}\:−\:\mathrm{1}}{\mathrm{2}}\right) \\ $$
Commented by mnjuly1970 last updated on 02/Apr/23
thx very nice
$${thx}\:{very}\:{nice} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *