Menu Close

if-x-1-y-y-1-x-0-prove-that-dy-dx-1-x-2-




Question Number 20831 by j.masanja06@gmail.com last updated on 04/Sep/17
if x(√(1+y)) + y(√(1+x))=0 prove that   (dy/dx)=−(1+x)^(−2)
ifx1+y+y1+x=0provethatdydx=(1+x)2
Answered by ajfour last updated on 04/Sep/17
x(√(1+y)) =−y(√(1+x))   so  x^2 (1+y)=y^2 (1+x)     or   x^2 −y^2 =xy(y−x)  ⇒    if y≠x ,   x+y+xy=0    or    y=−(x/(1+x))  differentiating which we get     (dy/dx)=−(([(1+x)−x])/((1+x)^2 )) = −(1+x)^(−2)  .
x1+y=y1+xsox2(1+y)=y2(1+x)orx2y2=xy(yx)ifyx,x+y+xy=0ory=x1+xdifferentiatingwhichwegetdydx=[(1+x)x](1+x)2=(1+x)2.

Leave a Reply

Your email address will not be published. Required fields are marked *