Menu Close

if-x-2-3xy-y-2-3-find-dy-dx-at-point-1-1-hence-differentiate-sin-x-1-x-with-respect-to-x-




Question Number 38252 by Rio Mike last updated on 23/Jun/18
if x^2  + 3xy − y^2  = 3 find   (dy/dx) at point (1,1) hence  differentiate ((sin x)/(1 + x)) with respect  to x.
$${if}\:{x}^{\mathrm{2}} \:+\:\mathrm{3}{xy}\:−\:{y}^{\mathrm{2}} \:=\:\mathrm{3}\:{find}\: \\ $$$$\frac{{dy}}{{dx}}\:{at}\:{point}\:\left(\mathrm{1},\mathrm{1}\right)\:{hence} \\ $$$${differentiate}\:\frac{{sin}\:{x}}{\mathrm{1}\:+\:{x}}\:{with}\:{respect} \\ $$$${to}\:{x}. \\ $$
Commented by math khazana by abdo last updated on 23/Jun/18
x^2  +3xy −y^2 =3 ⇒y^2  −3xy −x^2  +3=0  Δ=9x^2 −4(3−x^2 )=13x^2  −12 so if x^2 ≥((12)/(13))  y(x) =((3x +^−  (√(13x^2 −12)))/2) ⇒  y^′ (x)= (3/2) +^−  (1/2)  ((26x)/(2(√(13x^2 −12))))   =(3/2) +^−   ((13)/(2(√(13^ x^2  −12)))) ⇒  y^′ (1)=(3/2) +^−  ((13)/2)  ⇒y^′ (1)=8 or y^′ (1)=−5
$${x}^{\mathrm{2}} \:+\mathrm{3}{xy}\:−{y}^{\mathrm{2}} =\mathrm{3}\:\Rightarrow{y}^{\mathrm{2}} \:−\mathrm{3}{xy}\:−{x}^{\mathrm{2}} \:+\mathrm{3}=\mathrm{0} \\ $$$$\Delta=\mathrm{9}{x}^{\mathrm{2}} −\mathrm{4}\left(\mathrm{3}−{x}^{\mathrm{2}} \right)=\mathrm{13}{x}^{\mathrm{2}} \:−\mathrm{12}\:{so}\:{if}\:{x}^{\mathrm{2}} \geqslant\frac{\mathrm{12}}{\mathrm{13}} \\ $$$${y}\left({x}\right)\:=\frac{\mathrm{3}{x}\:\overset{−} {+}\:\sqrt{\mathrm{13}{x}^{\mathrm{2}} −\mathrm{12}}}{\mathrm{2}}\:\Rightarrow \\ $$$${y}^{'} \left({x}\right)=\:\frac{\mathrm{3}}{\mathrm{2}}\:\overset{−} {+}\:\frac{\mathrm{1}}{\mathrm{2}}\:\:\frac{\mathrm{26}{x}}{\mathrm{2}\sqrt{\mathrm{13}{x}^{\mathrm{2}} −\mathrm{12}}}\: \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}\:\overset{−} {+}\:\:\frac{\mathrm{13}}{\mathrm{2}\sqrt{\mathrm{13}^{} {x}^{\mathrm{2}} \:−\mathrm{12}}}\:\Rightarrow \\ $$$${y}^{'} \left(\mathrm{1}\right)=\frac{\mathrm{3}}{\mathrm{2}}\:\overset{−} {+}\:\frac{\mathrm{13}}{\mathrm{2}}\:\:\Rightarrow{y}^{'} \left(\mathrm{1}\right)=\mathrm{8}\:{or}\:{y}^{'} \left(\mathrm{1}\right)=−\mathrm{5} \\ $$
Commented by math khazana by abdo last updated on 23/Jun/18
let f(x)=((sinx)/(1+x)) so if x≠−1  f^′ (x)= ((cosx(1+x) −sinx)/((1+x)^2 )) = ((cosx +x cosx −sinx)/((1+x)^2 ))
$${let}\:{f}\left({x}\right)=\frac{{sinx}}{\mathrm{1}+{x}}\:{so}\:{if}\:{x}\neq−\mathrm{1} \\ $$$${f}^{'} \left({x}\right)=\:\frac{{cosx}\left(\mathrm{1}+{x}\right)\:−{sinx}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }\:=\:\frac{{cosx}\:+{x}\:{cosx}\:−{sinx}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *